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Abstract 15 

Profiling cellular heterogeneity in formalin-fixed paraffin-embedded (FFPE) tissues is key to 16 

characterizing clinical specimens for biomarkers, therapeutic targets, and drug responses. Here, we 17 

optimize methods for isolating intact nuclei and single nucleus RNA-Seq from FFPE tissues in the mouse 18 

brain, and demonstrate a pilot application to a human clinical specimen of lung adenocarcinoma. Our 19 

method opens the way to broad applications of snRNA-Seq to archival tissues, including clinical samples. 20 

 21 

22 
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Main Text 23 

High resolution profiling of the molecular and cellular heterogeneity in human clinical specimens is 24 

critical for advancing human biology, precision medicine, and drug discovery. Methods that enable 25 

scalable characterization of diverse clinical specimens are critical to understanding disease mechanisms, 26 

discovering biomarkers to help stratify patients, and identifying novel therapeutic targets as well as 27 

determining the impact of drugs. Single cell genomics has been highly successful at these tasks1, but is 28 

currently limited to either freshly harvested human tissues or fresh-frozen samples, profiled by single cell 29 

RNA-Seq (scRNA-Seq) or single nucleus RNA-Seq (snRNA-Seq), respectively2. In contrast, specimens 30 

of solid tissues routinely collected for histopathology are archived via formalin-fixed paraffin-embedding 31 

(FFPE). Recent technical innovations have advanced bulk RNA-Seq for FFPE samples, demonstrating the 32 

feasibility of polyA-based expression profiling even in heavily degraded tissues3–6. Furthermore, while 33 

spatial transcriptomics methods have increasingly enabled molecular profiling of FFPE specimens, these 34 

methods are not at single cell resolution and have limited detection of genes7. Thus, scalable single-cell 35 

profiling of FFPE samples remains a challenge8. FFPE tissues pose numerous difficulties for applying 36 

single-cell genomics, including the extraction of intact cells or nuclei from damaged cellular structures, 37 

and detecting heavily degraded, low quantity RNA6. In particular, a nucleus-based method should offer a 38 

compelling option that circumvents the challenge of dissociating intact whole cells from FFPE specimens 39 

where membranes might be too damaged for efficient recovery9–11. 40 

 41 

To this end, we present snFFPE-Seq, a method for snRNA-Seq of FFPE samples, by optimizing multiple 42 

stages of the process for both plate-based and droplet-based snRNA-Seq, including: (1) tissue 43 

deparaffinization and rehydration, (2) intact nucleus extraction, and (3) decrosslinking and 44 

deproteinization. We first developed snFFPE-Seq for mouse brain samples, and then applied it as a proof-45 

of-concept to a clinical sample of human lung adenocarcinoma. We account for the reduced complexity 46 

of snFFPE profiles by computational integration with existing snRNA-Seq atlases from frozen specimens 47 
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of the same tissues12. To circumvent data sparsity in a human clinical snFFPE-Seq sample, we present a 48 

new computational approach, Gene Aggregation across Pathway Signatures (GAPS), that obtains more 49 

robust signals by aggregating gene counts in individual nuclei using previously defined pathway 50 

signatures.  51 

 52 

We first developed a protocol for extracting intact nucleus suspensions from FFPE samples of the mouse 53 

brain by optimizing the deparaffinization and rehydration of tissues, then applying an established nucleus 54 

extraction method. We worked with 50 µm scrolls of the cortex area cut on a microtome to provide ideal 55 

reaction volumes and nucleus counts. We tested three deparaffinization treatments: mineral oil with heat 56 

(80˚C)13 , xylene with heat (90˚C), and xylene at room temperature14, each followed by tissue rehydration 57 

with graded ethanol washes (Fig. 1a; Methods). We then extracted nuclei using our previously-developed 58 

lysis buffer2,15 that maintains the attachment of ribosomes to the nuclear membrane, thus increasing the 59 

number of captured RNA molecules. We confirmed the successful isolation of intact nucleus suspensions 60 

with transmission electron microscopy, showing that the nuclear envelope was preserved with ribosomes 61 

attached, a condition that should improve RNA capture15 (Fig. 1b). 62 

 63 

Because formalin fixation leads to extensive cross-linking of RNA to other macromolecules that pose a 64 

challenge to capturing and sequencing RNA, we reverse the cross-linking by a combination of heat16 and 65 

protease digestion17, which are compatible with plate-based RNA-Seq approaches (SMART-Seq218 (SS2) 66 

and SCRB-Seq19). We first compared the impact of each deparaffinization treatment on bulk nuclei using 67 

SCRB-Seq, because SCRB-Seq incorporates unique molecular identifiers (UMIs) that enable assessing 68 

the efficiency of capturing unique RNA molecules. Xylene, either with heat or at room temperature, 69 

yielded a higher number of detected UMIs and genes than mineral oil (Fig. 1c). We chose xylene at room 70 

temperature for deparaffinization as it is easier and safer to work with than with heat. After choosing a 71 

deparaffinization condition based on UMI-based comparisons, we used SMART-Seq22,15 for subsequent 72 
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plate-based snFFPE-Seq experiments because SMART-Seq2 generally detected a higher number of genes 73 

than SCRB-Seq (Supplementary Fig. 1a). 74 

 75 

We next assessed the difference in RNA complexity between matched FFPE treated and fresh frozen 76 

tissue from the mouse brain. Mouse cortex of both brain hemispheres of the same mouse was harvested, 77 

with one hemisphere frozen and the other treated as FFPE. From each, we extracted nuclei and profiled 78 

them individually by SMART-Seq2. FFPE nuclei profiles had ~2.7X fewer genes detected than those from 79 

the frozen sample (median genes detected: 4,382 in frozen vs. 1,635 in FFPE; Supplementary Fig. 1b), 80 

and ~2X fewer detected genes when accounting for slight variations in sequencing depth by downsampling 81 

reads (median genes: 2,927 in frozen vs. 1,473 in FFPE; Fig. 1d; Methods). The fraction of reads mapping 82 

to the reference mouse genome was lower for FFPE nuclei (median 94.1%) than for frozen nuclei (median 83 

98.5%; Supplementary Fig. 1b, P=4*10-13, Mann-Whitney U test), as expected from degraded RNA. 84 

Mitochondrial content was <1% in both conditions (Supplementary Fig. 1c). Thus, while snFFPE-Seq 85 

yields fewer detected genes and mapped reads, untargeted snRNA-Seq from mouse brain FFPE still 86 

captured a substantial number of genes from the mouse transcriptome.  87 

 88 

SnFFPE-Seq of the mouse cortex captured the expression of known cell-type marker genes. We next 89 

obtained 630 snFFPE-Seq profiles from the brains of two mice using SMART-Seq2 (Methods). Because 90 

FFPE samples are typically contaminated with nucleic acids from other species20, we aligned reads to a 91 

joint mouse (mm10) and human (hg19) pre-mRNA reference genome21. The majority (68%) of nucleus 92 

profiles were highly species-specific and of good quality, with >90% of reads mapped to the mouse 93 

genome (88% of nuclei), low (<5%) mitochondrial content (99% of nuclei), good (>300) gene count (84% 94 

of nuclei), and unlikely to be doublets (<450,000 counts and <5,000 detected genes; 89% of nuclei; 95 

Supplementary Fig. 1d; Fig. 1e). Unsupervised clustering of 427 high-quality single nucleus profiles 96 

revealed distinct subsets that reflected the expression of established marker genes (Fig. 1f,g; Methods). 97 
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For example, subsets could be distinguished by marker expression as Plp1+ (oligodendrocytes), 98 

Gria1+Grin2b+ (inhibitory neurons), Csf1r+Cx3cr1+ (microglia), and Igf1r+Ly6c1+ (endothelial cells), 99 

among others, that were well-mixed across technical batches (Fig. 1g, middle bar).  100 

 101 

Encouraged by the detection of seemingly distinct cell types, we next developed a more scalable approach 102 

that could be compatible with droplet-based platforms. Formalin can be decrosslinked by either heat (e.g., 103 

during reverse transcription incubation12), protease digestion, or their combination. While protease-based 104 

deproteinization cannot occur inside droplets as it will degrade the reverse transcriptase enzyme, a recent 105 

study reported successful Proteinase K digestion of paraformaldehyde (PFA)-fixed cells before loading 106 

onto a droplet-based platform, with minimal leakage as determined by a barnyard experiment17. We 107 

applied a variation of this approach to FFPE nuclei by using thermolabile Proteinase K to deproteinize 108 

and decrosslink nucleus suspensions extracted from FFPE tissue at room temperature, then simultaneously 109 

heat inactivating the proteinase and partially decrosslinking the nuclei before loading onto a droplet-based 110 

platform (Methods). Because protease treatment reduced nucleus yield, we recommend starting with a 111 

large number (>105) of nuclei, if possible. 112 

 113 

Droplet-based snFFPE-Seq of the mouse cortex recovered broad cell types (Fig. 1h), although RNA 114 

damage and degradation reduced the complexity of RNA profiles as expected (Supplementary Fig. 1e,f). 115 

To improve cluster resolution, we co-embedded the RNA profiles from snFFPE-Seq with those from a 116 

snRNA-Seq study of the mouse cortex22, following a strategy we employed initially for the analysis of 117 

inCITE-Seq12 (a method for joint profiling of nuclear proteins and RNA in fixed nuclei, where we 118 

encountered similar challenges). We obtained robust integration of expression profiles across clusters 119 

consistent with known cell types and matching proportions across both methods (Fig. 1i,j; 120 

Supplementary Fig. 1g).  121 

 122 
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We next tested whether snFFPE-Seq could be applied to a clinical sample of a tumor. Using plate-based 123 

snFFPE-Seq, we collected 432 single nucleus profiles from an FFPE sample of human lung 124 

adenocarcinoma (LUAD) obtained from the primary tumor (Fig. 2a). For nuclei contaminated with mouse 125 

transcripts (Supplementary Fig. 2a,b), we removed mouse reads prior to further analysis. After filtering, 126 

we retained k=310 nuclei profiles for further analysis (Supplementary Fig. 2c; Methods). Due to the 127 

sparsity of transcriptomic profiles (Fig. 2b; median of 574 detected genes per nucleus), we did not perform 128 

unsupervised clustering. Instead, we classified each nucleus to a putative cell type based on known marker 129 

genes from a snRNA-Seq atlas of the healthy human lung23 (Fig. 2c; Methods); we prioritized using a 130 

nucleus-based atlas rather than a disease-matching cell atlas for annotation, as at the time of this writing 131 

there are no available LUAD snRNA-Seq data (only single cell-based data, which are challenging to 132 

integrate with nucleus-based data24). To validate cell type assignments, we reciprocally analyzed the 133 

expression of marker genes enriched in the snFFPE-Seq profiles of each assigned cell type, finding strong 134 

agreement for endothelial, epithelial, fibroblast, and muscle cells but reduced distinction between myeloid 135 

cells and lymphocytes (Fig. 2d,e Supplementary Fig. 2d). Expression of EGFR, BRAF, and ALK, critical 136 

targets for targeted therapy in non-small cell lung cancer25, was sparsely detected across assigned cell 137 

types, as expected (Supplementary Fig. 2e).  138 

 139 

To demonstrate the potential for data-driven discovery with snFFPE-Seq despite data sparsity in human 140 

samples, we clustered nucleus profiles by the expression of known cancer pathway signatures from 141 

MSigDB26, which identified clusters with distinct tumor-related programs. To this end, we developed a 142 

computational approach called Gene Aggregation across Pathway Signatures (GAPS), where we construct 143 

an expression matrix of nuclei-by-signatures (i.e., aggregated expression across signature genes). To avoid 144 

scoring the same gene sets repeatedly, we sought to identify non-redundant signatures: we clustered 145 

signatures by their pairwise gene membership Jaccard similarity scores, then selected a representative 146 

signature from each signature set (Fig. 2f; Supplementary Fig. 3a; Methods). Finally, we clustered 147 
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nuclei by their per-nucleus aggregated signature profiles, identifying 7 distinct nucleus clusters. 148 

Unsupervised clusters revealed several associated with tumor-related signatures (Fig. 2g): one enriched 149 

for the upregulation of lung adenocarcinoma-related signature KRAS and the mTOR pathway (e.g., 150 

KRAS.300_UP.V1_UP, RAPA_EARLY_UP.V1_UP), a separate cluster enriched for the downregulation 151 

of KRAS signature (e.g. KRAS.50_UP.V1_DN), and one reflecting signatures of the tumor suppressor 152 

PTEN and HDAC1 (e.g. PTEN_DN.V2_DN, GNF2_HDAC1). Thus, snFFPE-Seq can detect higher-153 

resolution variations in tumor cell subsets.  154 

 155 

In conclusion, snFFPE-Seq opens the way to scalable snRNA-Seq of FFPE samples, an essential sample 156 

source for clinical research. Our work provides a critical advance to profiling the vast resource of FFPE 157 

specimens, enabling greater access to the molecular diversity of human clinical samples across 158 

heterogeneous patient populations. Notably, a significant limitation to scaling is the high variability in the 159 

preparation of FFPE samples, including different formalin incubation durations and storage conditions 160 

which impact RNA quality. Furthermore, for large tissue specimens, some cells in the middle of the tissue 161 

can remain alive during fixation as formalin slowly penetrates, providing sufficient time for gene 162 

expression changes and cell death27. To mitigate this, we recommend quantifying the quality of bulk RNA 163 

extracted from a portion of the FFPE block before proceeding with snFFPE-Seq. For FFPE samples with 164 

heavily degraded, short RNA fragments, random primers20 or polyadenylation of short RNA sequences 165 

with SMART-Seq-total28 may improve the capture rate. Furthermore, our nucleus extraction method can 166 

be coupled to multiple other profiling methods, including multiplexed antibody-based detection of 167 

proteins12 or targeted mutation profiling29,30. Further optimization of tissue-specific snFFPE-Seq protocols 168 

combined with emerging spatial transcriptomics techniques for FFPE8,31,32 and new computational 169 

methods that tackle sparsity should significantly enhance our understanding of the functional organization 170 

and interactions of cells in tissues, especially in disease. 171 

  172 
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Methods 173 

 174 

Human subjects 175 

Adult patients included in this work provided preoperative informed consent to participate in the study 176 

according to Institutional Review Board protocol at Boston Medical Center H-27014.  177 

 178 

Mice 179 

C57BL/6J (Jax 000664) mice were purchased from The Jackson Laboratory and bred in-house. Male and 180 

female mice were used at 8-12 weeks of age. All mice were maintained under SPF conditions on a 12-h 181 

light-dark cycle and provided food and water ad libitum. All mouse experiments were approved by and 182 

performed per the Institutional Animal Care and Use Committee guidelines at the Broad Institute. 183 

 184 

FFPE preparation of mouse brain 185 

Adult 8-12 week-old mice were euthanized by CO2. The entire mouse brain tissue was dissected, placed 186 

in embedding cassettes, and fixed in 4% methanol-free paraformaldehyde at 4ºC overnight. Fixed tissue 187 

was then dehydrated in 80% ethanol and processed on the Vacuum Infiltrating Tissue Processor (VIP) at 188 

the Koch Institute Histology Core as follows: 70% ethanol for 45 min, 85% ethanol for 45 min, 95% 189 

ethanol for 3x 45 min, 100% ethanol 2x 45 min, xylene 3x 45 min. Tissues were embedded into paraffin 190 

wax at 58-60ºC across four changes, 30 min each. For histology, FFPE blocks were sectioned at 20 µm 191 

and stained with hematoxylin and eosin. All FFPE tissue samples were prepared weeks before testing; 192 

older blocks, especially those not optimally preserved, are more likely to have degraded RNA.  193 

 194 

FFPE preparation of human lung adenocarcinoma 195 

FFPE lung tissue samples were obtained from Boston Medical Center (BUMC). Briefly, a resection of 196 

human lung adenocarcinoma was processed with standard histopathology procedure for 24 hours in 10% 197 
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neutral buffered formalin (NBF) before processing through graded ethanol dehydration steps, embedded 198 

in paraffin, then stored at room temperature. FFPE blocks were sectioned into 50 µm scrolls, collected 199 

into 1.7 mL Eppendorf tubes, and maintained at 4˚C before processing for snFFPE-Seq. Starting with 200 

thinner scrolls, e.g., 25 µm, resulted in the loss of a pellet during nucleus extraction.  201 

 202 

Deparaffinization, tissue rehydration, and nucleus extraction  203 

FFPE blocks were prepared by cutting 50 µm scrolls on a microtome (cleaned with 70% EtOH and 204 

RNAseZAP) and stored in a sterile safe lock 1.5 mL Eppendorf tube at 4˚C. Deparaffinization of 50µm 205 

scrolls was tested with three different methods. Each protocol started with three 50 µm FFPE scrolls placed 206 

in a 1.5 mL safe lock Eppendorf tube. Excess paraffin was trimmed with a razor blade. 207 

1) Mineral oil with heat. We added 500 µl of mineral oil to the tube with FFPE scrolls and incubated at 208 

80˚C for 5 min on a heat block. After a quick vortex and spin in a microcentrifuge, 750 µl of 95% ethanol 209 

was added and incubated for 2 min at 80˚C. The tube was spun down to create a phase separation, and the 210 

upper phase of the mineral oil was removed thoroughly. The tissue was resuspended with 1 mL of 95% 211 

ethanol pre-warmed at 80˚C, vortexed, and incubated at room temperature (RT) for 2 min. After a spin 212 

down, residual oil drops in the upper phase and the ethanol were removed. We then conducted the 213 

following ethanol rehydration steps at RT: twice with 1 mL of 75% ethanol, and twice with 1 mL of 50% 214 

ethanol.  215 

2) Xylene with heat. We added 1 mL of xylene to the tube with FFPE scrolls, incubated at RT for 10 min, 216 

and spun down. Xylene was removed, and the process was repeated twice but with 10 min incubations at 217 

90˚C, for a total of 3 xylene washes. Tissue was rehydrated at RT with 1 mL of 95%, 75%, and 50% 218 

ethanol with 2 min incubations each, repeating each ethanol concentration twice. The tube was spun down 219 

after each incubation and ethanol removed. 220 

3) Xylene at room temperature. We added 1 mL of xylene to the tube with FFPE scrolls, incubated at RT 221 

for 10 min, and spun down in a microcentrifuge. Xylene was removed, and the process was repeated twice 222 
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for a total of 3 xylene washes. Tissue was rehydrated at RT with 1 mL of 95%, 75%, and 50% ethanol 223 

with 2 min incubations each, repeating each ethanol concentration twice. The tube was spun down after 224 

each incubation and ethanol removed. 225 

 226 

Nucleus extraction was performed after deparaffinization and rehydration with the following protocol as 227 

previously developed2,15. All nucleus extractions were conducted on ice and/or at 4˚C. 228 

2X salt-Tris (ST) buffer: 292 mM NaCl (ThermoFisher #AM9760G), 20 mM Tris-HCl pH 7.5 229 

(ThermoFisher #15567027), 2 mM CaCl2 (Sigma Aldrich #21115), 42 mM MgCl2 (ThermoFisher 230 

#AM9530G) in ultrapure water (ThermoFisher #10977015). 231 

1X Salt-Tris buffer without MgCl2 (ST-): 146 mM NaCl, 10 mM Tris-HCl pH 7.5, 1 mM CaCl2 232 

in ultrapure water, and 40 U/mL SUPERaseIn (ThermoFisher #AM2696).  233 

1X ST buffer: 1 part 2X ST buffer, 1 part ultrapure water, 40 U/mL SUPERaseIn.  234 

CST lysis buffer (scaled appropriately): 1 mL of 2X ST buffer, 980 µl of 1% CHAPS (Millipore 235 

#220201), 10 µl of 2% BSA (NEB B9000S), 2 µl of 20 U/mL SUPERaseIn, 8 µl ultrapure water. 236 

 237 

Mouse brain 238 

On ice, rehydrated tissue was placed into a glass douncer (Sigma Aldrich D8938) with 2 mL of ice-cold 239 

CST lysis buffer, then dounced 25x with pestle A followed by 25x with pestle B. The homogenized lysate 240 

was passed through a 30 µm filter (Miltenyi #130-041-407). An additional 2 mL of 1X ST buffer was 241 

used to rinse the douncer, then passed through the filter. A final 1 mL of 1X ST buffer was added to bring 242 

the final volume to 5 mL, and incubated on ice for 5 min. The tube was spun at 500g for 5 min at 4˚C in 243 

a swinging bucket centrifuge. After removing the supernatant, the pellet was resuspended in 1 mL of 1X 244 

ST buffer, incubated on ice for 5 min, spun at 500g for 5 min at 4˚C, and resuspended in 500 µl of 1X ST 245 

buffer. An aliquot of nuclei was stained with DAPI and counted under a fluorescent microscope. 246 

 247 
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Human lung adenocarcinoma  248 

On ice, rehydrated tissue was placed into a well of a 6-well plate (Stem Cell Technologies #38015) with 249 

1 mL of ice-cold CST lysis buffer. The tissue was finely chopped using Noyes Spring Scissors (Fine 250 

Science Tools #15514-12) for 10 min on ice. The homogenized lysate was filtered through a 40 µm Falcon 251 

cell strainer (ThermoFisher #08-771-1) into a 50 mL Falcon tube. Another 1 mL of cold CST was used to 252 

wash the well and added through the filter. The volume was brought up to 5 mL with 3 mL of 1X ST 253 

buffer, transferred to a 15 mL Falcon tube, and incubated on ice for 5 min. Nuclei extract was spun at 254 

500g for 5 min at 4˚C in a swinging bucket centrifuge. After removing the supernatant, the pellet was 255 

resuspended in 500 µl 1X ST buffer and filtered through a 35 µm Falcon cell strainer (Corning #352235).  256 

An aliquot of nuclei was stained with DAPI and counted under a fluorescent microscope. 257 

 258 

Fluorescence-activated cell sorting (FACS) for plate-based sequencing  259 

Nucleus suspensions were stained with Vybrant DyeCycle Ruby (ThermoFisher #V10309) at 1:500 and 260 

filtered through a 20 µm filter (Miltenyi #130-101-812). Individual nuclei were sorted on a Sony Sorter 261 

SH800 with a 100 µm sorting chip into wells of a 96-well plate containing 5 µl of Buffer TCL (Qiagen 262 

#1031576) with 1% β-mercaptoethanol (ThermoFisher #21985023). 263 

 264 

Single nucleus RNA-Sequencing with deproteinization and decrosslinking 265 

Plate-based SCRB-Seq and SMART-Seq2 266 

Plate-based snFFPE-Seq protocols were carried out by adding 1 µl of 1 µg/µl proteinase K 267 

(ThermoFisher #AM2548) to each well with the sorted FFPE nuclei, followed by incubation at 55°C for 268 

15 min, then crosslink reversal at 80°C for 15 min. Post incubation cleanup was conducted using 2.2X 269 

by volume of Agencourt RNAClean XP beads (Beckman Coulter, #A63987) used according to the 270 

manufacturer’s protocol. All subsequent steps, including library construction, were carried out following 271 

the standard SCRB-Seq33 and SMART-Seq 234 protocols, except reverse transcription reactions were 272 
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enhanced by increasing MgCl2 concentration to 10 mM and by the addition of trehalose (Life Sciences 273 

#TSIM100) to 0.6 M.  274 

 275 

SCRB-Seq libraries were sequenced on a NextSeq 500/550 with 16 cycles for read 1, 8 cycles for index 276 

1, and 68 cycles for read 2. SMART-Seq 2 libraries were sequenced on a NextSeq 500/550 with 38 277 

cycles for read 1, 8 cycles for index 1, 8 cycles for index 2, and 38 cycles for read 2.  278 

 279 

Droplet-based scRNA-Seq 280 

Nucleus suspensions were adjusted to ~104 nuclei/µl in 100 µl of 1X ST(-) buffer. To deproteinize, 2 µl 281 

of undiluted Thermolabile Proteinase K (NEB #P8111S) and 1 µl SUPERaseIN (20 U/µl) were added to 282 

the suspension and incubated for 30 min at room temperature, followed by proteinase inactivation and 283 

reverse crosslinking for 10 min at 55˚C on a heat block. Nuclei extract was spun at 500g for 5 min at 4˚C 284 

in a swinging bucket centrifuge. After removing the supernatant, the pellet was resuspended in 100 µl of 285 

ice-cold 1X ST(-) buffer. The nuclei were then placed on ice, counted, and adjusted appropriately to a 286 

concentration of ~103 nuclei/ µl for loading the 10X Chromium chip. We loaded 15,000 nuclei onto a 287 

single channel of the Chromium Chips for the Chromium Single Cell 3’ Library (V3, PN-1000075). All 288 

subsequent steps, including library construction, were prepared according to the standard protocol 289 

according to the manufacturer’s instructions. Libraries were sequenced on a HiSeq X with 28 cycles for 290 

read 1, 8 cycles for index 1, and 96 cycles for read 2.  291 

 292 

Data pre-processing 293 

Plate-based data were pre-processed with the zUMIs pipeline35 version 2.4.5b (for SMART-Seq2 and 294 

SCRB-Seq), and droplet-based data were pre-processed with CellRanger version 3.1.0 on Cumulus 295 

version 1.036. Reads from demultiplexed FASTQ files were aligned to pre-mRNA annotated genomes of 296 
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the jointly combined mouse (mm10) and human (hg19) reference genomes as previously described21. All 297 

reads were aligned to the mm10_and_hg19_premRNA reference genome21. 298 

 299 

Comparison of gene counts across deparaffinization protocols  300 

To compare RNA capture across deparaffinization, UMIs were pooled from all nuclei profiles in one 301 

snFFPE-Seq or snRNA-Seq experiment, and down-sampled to the minimum number of UMIs detected in 302 

frozen nuclei: 18,159 UMIs for k=10 nuclei and 59,608 UMIs for k=100 nuclei. 303 

 304 

Comparison of gene counts between snFFPE-Seq and snRNA-Seq 305 

To compare the number of genes between snFFPE-Seq and snRNA-Seq of mouse brain using SMART-306 

Seq2, reads were downsampled to the median counts detected among FFPE nuclei (47,887 counts).  307 

 308 

Clustering of SMART-Seq2 snFFPE-Seq of mouse brain 309 

All analyses were conducted with scanpy v1.9.137. Nucleus profiles were retained if and only if >90% of 310 

their detected genes were mapped to the mouse (mm10) reference, <5% of reads were mitochondrial, at 311 

least 300 detected genes, and no more than 450,000 counts and 5,000 genes. Raw counts were normalized 312 

by ln(gene length), then normalized per nucleus using scanpy’s normalize_per_cell function, and ln+1 313 

transformed. Of the 20,347 genes detected, 2,059 highly variable genes were selected using the 314 

highly_variable_genes function in scanpy (min_mean=0.32, max_mean=2, min_disp=0.5). The number 315 

of mouse genes detected was regressed, followed by plate batch, and data were clipped at max_value=10. 316 

Dimensionality reduction was performed using Principal Component Analysis (PCA), a k-nearest 317 

neighbor (k-NN) graph was constructed with the top 30 PCs and k=10 neighbors, clustered with the Leiden 318 

algorithm38, and projected into a uniform manifold approximation and projection (UMAP) embedding39. 319 

Marker genes were identified for each cluster by comparing the nuclei profile in that cluster to profiles for 320 

all other clusters using a t-test (Supplementary Table 1). 321 
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 322 

Analysis of gene expression for droplet-based snFFPE-Seq of the mouse brain  323 

Nucleus profiles were retained if and only if <5% of reads were mitochondrial and had at least 220 but no 324 

more than 1000 detected genes. Genes detected in >2 filtered nuclei were kept. Raw counts were 325 

normalized per nucleus using scanpy’s normalize_total function and ln+1 transformed. SnFFPE-Seq 326 

nuclei profiles from this study (k=7,078) were jointly embedded with snRNA-Seq data of the cortex from 327 

a published study22 (k=17,948; WT only). Of the 19,905 genes detected, 5,555 highly variable genes were 328 

selected using the highly_variable_genes function in scanpy (min_mean=0.0016, max_mean=0.16, 329 

min_disp=0.31). The number of counts and the fraction of mitochondrial reads were regressed, followed 330 

by sequencing assay type (snRNA-Seq vs. snFFPE-Seq), then scaled and clipped at max_value=10. 331 

Further integration across sequencing assay types was conducted via an implementation of Harmony40. 332 

Dimensionality reduction was performed using Principal Component Analysis (PCA), a k-nearest 333 

neighbor (k-NN) graph was constructed with the top 40 PCs and k=10 neighbors, clustered with the Leiden 334 

algorithm38, and projected into a uniform manifold approximation and projection (UMAP) embedding39. 335 

A cluster with high mitochondrial content (k=11 nuclei) and a cluster whose top marker genes were 336 

lncRNAs and mitochondrial genes without an obvious match to known cell types of the cortex (k=206) 337 

were removed. The final embedding consisted of k=7,031 snFFPE-Seq and k=17,778 snRNA-Seq nuclei 338 

RNA profiles. Marker genes were identified for each cluster by comparing the nuclei profile in that cluster 339 

to profiles for all other clusters using a t-test (Supplementary Table 2). 340 

 341 

Cell type annotation of snFFPE-Seq of human lung adenocarcinoma  342 

Pre-processing. All analyses were conducted with scanpy v1.9.137. Nucleus profiles were retained if and 343 

only if <10% of reads were mitochondrial and had at least 200 but no more than 4,000 detected genes, 344 

yielding 310 nucleus profiles (of 432) with 16,920 human genes detected in at least one profile. Given the 345 

high expression of lncRNA, genes starting with RP11 and LINC were removed (3,783 such genes 346 
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removed). The final count matrix for downstream analysis consisted of 310 nuclei and 16,556 genes. 347 

Counts were normalized within each nucleus, transformed to ln+1 counts, regressed out for the number of 348 

hg19 genes detected followed by the plate batch, then scaled with max_value at 10.  349 

 350 

Assigning cell types. The top 50 marker genes of broad cell types from a previously annotated snRNA-351 

Seq atlas of the healthy human lung (Cell types level 2)23 were used to calculate a cell type score for each 352 

snFFPE-Seq profile, using the score_genes function in scanpy (t-test). Only marker genes detected in 353 

snFFPE-Seq were used (46 epithelial, 45 endothelial, 49 fibroblast, 47 lymphocyte, 49 myeloid, 46 354 

muscle; Supplementary Table 3), and these genes were used to calculate a cell type score for each FFPE 355 

nucleus profile using the score_genes function in scanpy. Each nucleus profile was assigned a putative 356 

cell type identity based on the maximum score. We then identified genes enriched in the snFFPE-Seq data 357 

based on their assigned cell types using the rank_genes_groups function (t-test; Supplementary Table 358 

4), then reciprocally examined their expression in the snRNA-Seq lung atlas23.   359 

 360 

Clustering of snFFPE-Seq by Gene Aggregation across Pathway Signatures (GAPS)  361 

For each of 616 MSigDB tumor-related pathway signatures (c4.cgn, cancer gene neighborhoods; c6, 362 

oncogenic signature set), a signature was retained if it was comprised of at least 20 and at most 150 363 

detected genes in the FFPE data and if at least 50% of its member genes were detected, resulting in 499 364 

signatures (Supplementary Table 5). To create a signature expression xi,p for each nucleus i, raw counts 365 

ci,j were aggregated across the signature genes and normalized by the number of genes in the signature 366 

(that are also expressed in the dataset), |P|:  367 

"!,# =	
∑ &!,$|&|
$'(
|(|  368 

Redundant signatures were removed by the following procedure. First, the Jaccard index was calculated 369 

for each pair of signatures A and B as J(A,B) = |AÇB| / |AÈB| based on the gene sets defining each 370 
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signature. Signatures were clustered by their Jaccard similarity profiles with a Euclidean distance and the 371 

ward method. The linkage matrix was used to cut the dendrogram at a threshold of 2.2, identifying 22 372 

signature sets (Supplementary Fig. 3a). Sixteen of the 22 signature sets contained redundant signatures, 373 

defined if a signature set’s median within-cluster pairwise Jaccard index greater was than 0.15 (color block 374 

in Supplementary Fig. 3a). A representative signature was selected for each of the 16 signature sets (to 375 

preserve interpretability and annotation) as the signature with the maximum median pairwise Jaccard 376 

index within each set. The remaining 184 signatures xi,p were removed from the nuclei x signatures 377 

expression matrix, resulting in 308 unique GAPS (292 GAPS not in a redundant signature set and 16 378 

representative GAPS of each of the 16 redundant sets) across 8,370 unique genes (Supplementary Table 379 

6).  380 

 381 

The filtered GAPS expression matrix was normalized and transformed to ln+1 counts. Of 308 unique 382 

GAPS, 75 highly variable GAPS were selected using the highly_variable_genes function in scanpy 383 

(min_mean=0.5, max_mean=2, min_disp=0.25, batch_key=’plate’). The number of counts (across all 384 

genes), the number of GAPS per nucleus, and the plate batch were all regressed, and then data were scaled 385 

with max_value at 10. Dimensionality reduction was performed using Principal Component Analysis 386 

(PCA), a k-nearest neighbor (k-NN) graph (k=10 nearest neighbors) was constructed with the top 40 PCs 387 

and k=10 neighbors, clustered with the Leiden algorithm, and projected into a uniform manifold 388 

approximation and projection (UMAP) embedding. Marker GAPS were identified for each cluster by 389 

comparing the nucleus profiles in that cluster to profiles for all other clusters using a t-test 390 

(Supplementary Table 7). 391 

 392 

Data Availability Statement 393 

Gene expression count matrices and raw FASTQ files for all mouse snFFPE-Seq data have been uploaded 394 

to Gene Expression Omnibus under accession GSE211797. Gene expression counts and raw FASTQ files 395 
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of the human lung adenocarcinoma sample will be uploaded on a controlled access platform. Mouse cortex 396 

data22 used for the joint embedding of the mouse cortex is available under GSE143758. Human snRNA-397 

Seq atlas data23 used to annotate the lung data is available at https://gtexportal.org/home/datasets. 398 

 399 

Code Availability 400 

All code used for analyses is available at https://github.com/klarman-cell-observatory/snFFPE-Seq.   401 
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Fig. 1 



Figure 1. Development of single nucleus FFPE-Seq (snFFPE-Seq) in the mouse brain. a. 

Overview of the snFFPE-Seq workflow. b. Intact nucleus extraction from FFPE. Transmission 

electron microscopy of four representative intact nuclei with attached ribosomes extracted from 

an FFPE sample of the mouse brain, after deparaffinization with xylene at room temperature. Scale 

bar, 500 nm. c. Impact of three deparaffinization treatments on RNA capture. Number of genes (y 

axis) detected by RNA-Seq of bulk nuclei (k=10 or k=100) using SCRB-Seq by each 

deparaffinization condition (x axis), after downsampling UMI counts. Each dot indicates technical 

replicates (n=8 for each bar); error bars, 1 s.d. d. Good but reduced transcriptome complexity in 

snFFPE-Seq vs. snRNA-Seq of matched frozen tissue of mouse brain hemispheres. Distribution 

of the number of genes (log10, x axis) detected in nuclei from FFPE (top) or frozen (bottom) tissue, 

after downsampling reads (Methods). e-g. Plate-based snFFPE-Seq distinguishes cell types in the 

mouse cortex. e. Distribution of the number of genes detected (y axis) in k=453 nuclei profiled by 

SMART-Seq2 after xylene RT deparaffinization (dots). f. Uniform Manifold Approximation and 

Projection (UMAP) embedding of 453 snFFPE-Seq profiles, colored by cluster and annotated post 

hoc (color legend). g. Expression (z score, color bar) of the top 10 marker genes (rows) identified 

for each cluster in (f). Each nucleus profile (columns) is labeled by the corresponding cell type 

(top bar) and plate batch (middle bar). h. Cell types from the adult mouse cortex identified by joint 

embedding of droplet-based snFFPE-Seq and snRNA-Seq. UMAP embedding of single nucleus 

RNA profiles from snFFPE-Seq (k=7,031) and four snRNA-Seq experiments from a published 

study22 (k=17,778), colored by cluster and annotated post hoc (color legend) (left) or by profiling 

method (right). “Ex”: excitatory neuron. i. Droplet-based snFFPE-Seq and snRNA-Seq capture 

similar distribution of cell types. Percent of nuclei (y axis) from each assay (color) in each cluster 

(x axis) in (h). j. Marker gene expression in droplet-based snFFPE-Seq. Mean expression (log 

normalized counts, dot color) and proportion of expressing cells (dot size) of marker genes 

(columns) in each group used for annotating cell type clusters (rows) in droplet-based snFFPE-

Seq nucleus profiles. 

  



	
Fig. 2 



Figure 2. Application of snFFPE-Seq to a human lung adenocarcinoma sample. a. Plate-based 

snFFPE-Seq of a human lung adenocarcinoma (LUAD) sample. b. Distribution of the number of 

unique genes detected (y axis) across k=310 nucleus profiles (dots). c-e. Cell type annotation and 

signature detection in sparse LUAD snFFPE-Seq by atlas-based classification and annotation. c. 

Schematic of classification. d. Expression (color, z score) of top marker genes (genes, rows) 

corresponding to known cell types of the human lung across all profiled nuclei (columns), labeled 

by annotated cell type (color legend and bar) and plate batch (bottom color bar). e. Distribution of 

expression in snRNA-Seq lung atlas of select cell type marker genes (x axis) identified in snFFPE-

Seq data for each cell type (rows) (all genes shown in Supplementary Fig. 2d). Color is 

proportional to the median expression in each set of nuclei. f,g. Clustering sparse snFFPE-Seq 

profiles by Gene Aggregation across Pathway Signatures (GAPS). f. Overview of strategy. g. 

Mean expression (Z score) of top pathway signatures (rows) in each nucleus profile (columns) 

labeled by clusters (bottom color bar).  
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Supplementary Figure 1. Quality control metrics related to the development of snFFPE-Seq 

in the mouse brain. a. Comparing SCRB-Seq vs. SMART-Seq2-Seq for RNA detection across 

deparaffinization conditions. Number of genes detected (y axis) in bulk RNA-Seq of k=100 nuclei 

extracted from frozen or FFPE mouse brain across deparaffinization conditions (x axis) with 

SCRB-Seq or SMART-Seq2-Seq (color). Reads were downsampled to 50,000 per sample to 

conduct a fair comparison. Each dot indicates technical replicates (n=8 for SCRB-Seq, n=1 for 

SS2), where each replicate is across k=100 nuclei. Error bars, 1 s.d. b,c. Comparison of RNA 

profile quality metrics in frozen vs. FFPE nuclei from matching hemispheres of the same mouse 

brain. b. Left: Number (log10) of unique genes (y axis) and reads (x axis) detected in individual 

nuclei (dots) colored by tissue treatment. Right: Distribution of the fraction (%) of reads aligned 

to the mm10 genome (x axis) by tissue treatment (FFPE, top; frozen, bottom). c. Distribution of 

the fraction of mitochondrial reads (y axis) in each nuclei profiled from FFPE or frozen tissue (x 

axis). d. Quality control metrics and thresholds used to select high quality nuclei profiles from 

plate-based snFFPE-Seq. From left to right: Distributions of fraction (%) of reads aligned to the 

mouse genome in each nucleus (x axis, left) or to the mitochondrial genome (y axis) in each plate 

(x axis) (second from left); of the number of genes (x axis, second from right) detected in each 

nucleus; and the number of counts (x axis) and the number of genes (y axis) in each nucleus to 

filter suspected doublets (far right). Red lines indicate thresholds used to filter nuclei and the label 

on top indicates the direction of the filter. e-g. Quality measures for droplet-based snFFPE-Seq of 

the mouse cortex. e. Distribution of number of UMIs (x axis) in each droplet from snFFPE-Seq 

(left) or published snRNA-Seq (right). Red line: threshold used to filter. f. Distributions (marginals) 

of the number of UMIs (x axis) and genes (y axis) from snFFPE-Seq (left) and published snRNA-

Seq (right). Density of individual nuclei (dots) is calculated with a Gaussian kernel estimate. g. 

Mean expression (log normalized counts, dot color) and fraction of expressing cells (dot size) of 

select marker genes (columns) in nuclei of each cell type (rows) in snRNA-Seq (top). 
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Supplementary Figure 2. Quality control metrics and characterization of snFFPE-Seq of a 

human lung adenocarcinoma (LUAD) sample. a-c. Quality characteristics across batches. a. 

Percentage of reads aligned to the mouse (mm10, y axis) and human (hg19, x axis) genomes, in 

each nucleus (dots) colored by plate batch (color). b. Distribution of % reads aligned to the mouse 

genome (y axis) for individual nuclei (dots) in each plate batch (x axis). c. Number of unique genes 

detected (log10, y axis) and number of unique reads (log10, x axis) for each nucleus (dots) colored 

by plate batch. d. Marker gene expression of assigned cell types derived from snFFPE-Seq, shown 

in snRNA-Seq atlas of the healthy human lung. Distribution of expression in snRNA-Seq lung 

atlas of each cell type marker gene (x axis) identified in snFFPE-Seq data for each cell type (rows). 

Color is proportional to the median expression in group.  e. Lung cancer driver oncogene 

expression in snFFPE of LUAD. Expression (colorbar, Z score) of EGFR, BRAF, ALK (rows) 

across LUAD snFFPE-Seq nucleus profiles (columns), grouped by assigned cell type (color).  
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Supplementary Figure 3. Identifying redundant pathway signatures. Jaccard similarity index 

(color) of each pair of pathway signatures (rows, columns), hierarchically clustered with a 

Euclidean distance and the ward metric. Dashed line: dendrogram (left) cut at a distance threshold 

of 2.2. Colored numbered branches: leaf assignment to 22 clusters based on their cut branch. 

Matching color block: Clusters of signatures considered as redundant (median pairwise Jaccard 

index > 0.15).  


