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Single-nucleus (sn)RNA-seq is an essential tool for profiling 
the heterogeneity of solid tissues, particularly those that are 
frozen or are challenging to dissociate, or for samples that 

require preservation of cellular activity states by avoiding nonspe-
cific activation induced by enzymatic cellular dissociation1–7. The 
nucleus is also a key site of gene regulation by a wide array of pro-
teins, the presence and levels of which shape gene expression. For 
example, nuclear concentrations of TFs are mechanistic determi-
nants of gene expression that influence the dynamics of TF target 
binding8,9. Simultaneously measuring quantitative protein levels 
and the transcriptome inside individual nuclei would enable inte-
grating rich phenotypic and genomic information in tissues and 
leverage nuclear localization information of proteins. In addition, 
cellular proteins also provide stable, time-integrated information 
over mRNA, which is often rapidly degraded10–12.

Methods that use DNA-conjugated antibodies to jointly mea-
sure surface protein levels and RNA at single-cell resolution, such 
as cellular indexing of transcriptomes and epitopes by sequencing 
(CITE-seq)13 and the RNA expression and protein sequencing assay 
(REAP-seq)14, with recent adaptations to cytoplasmic protein tar-
gets15–19, have been applied to circulating immune cells20,21. However, 
these methods are less suited for non-immune cells and solid tissues 
where dissociation disrupts the integrity of cellular membranes. 
While single-nucleus methods are preferred for profiling solid tis-
sues, it remains a challenge to quantitatively measure protein levels 
with the transcriptome in individual nuclei, as DNA-conjugated 
antibodies are ‘sticky’ inside the nucleus due to ubiquitous nonspe-
cific binding22.

Aberrations in nuclear levels of specific TFs can be hallmarks 
of disease and can even be used to predict patient outcomes23–25. 
Simultaneously measuring nuclear proteins and the transcriptome 

in single cells would enable relating levels of nuclear proteins and 
newly transcribed RNA to reveal genes and pathways involved in 
cell state changes2,10–12,26–28 and how gene networks regulated by TFs 
vary across contexts and in disease29. Furthermore, nuclear localiza-
tion of TFs can indicate a change in cellular activity states, such as 
in the case of TFs that shuttle in and out of the nucleus in response 
to external signals30,31. The activity-regulated TF complexes nuclear 
factor (NF)-κB and activator protein (AP)-1 and their components 
p65 and c-Fos transiently localize to the nucleus downstream of 
signal transduction, where they regulate diverse pathways related 
to inflammation, oncogenesis, apoptosis, cell proliferation and syn-
aptic remodeling30,32–36. Single-nucleus profiling is best suited for 
studying these activity-regulated TFs because it minimizes spurious 
expression of these pathways due to technical artifacts such as cel-
lular dissociation4.

Current studies that monitor nuclear TF levels and gene expres-
sion typically rely on live cell imaging, in situ measurement of pro-
tein and RNA levels in tissue by staining and hybridization, or cell 
sorting and profiling based on fluorescent reporters. Such stud-
ies have shown that nuclear localization can vary between indi-
vidual cells stimulated together due to asynchrony in responses 
and dynamic shuttling37,38. However, methods relying on report-
ers or a handful of probes are limited in their ability to relate 
changes in protein localization to their genome-wide impacts on 
transcription.

Here, we report inCITE-seq, a method that enables mul-
tiplexed and quantitative intranuclear protein measurements 
using DNA-conjugated antibodies coupled with RNA-seq on a 
droplet-based profiling platform (Fig. 1a). To allow antibody dif-
fusion across the nuclear membrane, nuclei are lightly fixed with 
formaldehyde, permeabilized then blocked under optimized  
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conditions (blocking buffer, Methods) to minimize nonspe-
cific binding of DNA-conjugated antibodies inside the nucleus. 
Nucleus-hashing antibodies are simultaneously added to 
each sample for multiplexing39 (Methods). We then sequence 
antibody-stained nuclei with droplet-based snRNA-seq for simul-
taneous capture of antibody DNA tags and the transcriptome. We 
demonstrate the utility of inCITE-seq for profiling the response to 
environmental stimuli in cells and tissues, first in a HeLa cell line 
responding to cytokine stimulation and then in the mouse brain 
after pharmacological treatment.

Results
inCITE-seq detects nuclear translocation of a TF induced by an 
extracellular signal. We first developed inCITE-seq to detect cell 
state changes in HeLa cells, defined as elevated nuclear levels of 
a TF that translocates into the nucleus in response to an external 
stimulus. We used a HeLa cell line expressing a p65–mNeonGreen 
reporter construct40,41, in which p65 localizes to the cytoplasm in 
untreated cells and translocates to the nucleus upon stimulation 
with tumor necrosis factor (TNF)-α (Fig. 1b and Methods). At 
peak nuclear translocation (~40 min after stimulation41), total p65 
levels in the whole cell are constant, with no discernible difference 

between untreated and TNF-α-stimulated cells in mNeonGreen sig-
nal measured by flow cytometry, but nuclear p65 levels are highly 
elevated (Extended Data Fig. 1a,b).

To resolve p65 TF levels in the nuclei of untreated versus 
TNF-α-stimulated cells, we first optimized intranuclear antibody 
staining conditions using unconjugated anti-p65 antibody (p65Ab) 
such that flow cytometry detected a clear signal separation that 
was in agreement with the mNeonGreen reporter signal (Fig. 1c, 
Extended Data Fig. 1d and Methods). We chose initial fixation and 
permeabilization parameters based on prior methods42 and vali-
dated that antibodies successfully diffused across the nuclear mem-
brane by imaging smears of nuclei stained in suspension (Extended 
Data Fig. 1c). However, the same staining conditions for the 
DNA-conjugated p65 antibody (p65inCITE-Ab) could not resolve p65 
signal between nuclei with no treatment (NT) and TNF-α treatment 
(Extended Data Fig. 1e), underscoring challenges of nonspecific 
binding of DNA-conjugated antibodies in the nucleus that occur 
even in situ22. Adding dextran sulfate to the blocking and staining 
buffers improved signal separation14,22,43, clearly resolving NT and 
TNF-α-treated populations, even when compared to two com-
mercial intracellular staining buffers used for cytoplasmic targets  
(Fig. 1c and Methods).
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Fig. 1 | inCItE-seq simultaneously measures intranuclear protein and RNA levels at single-nucleus resolution. a, Overview of inCITE-seq for 
droplet-based profiling of nuclear proteins with nucleus hashing in HeLa cells. b, In situ fluorescent images of HeLa cells expressing a p65–mNeonGreen 
reporter (p65mNGreen) stained with p65Ab (followed by Alexa Fluor 657-conjugated secondary antibody), sampled without treatment (NT, top) or 40 min 
after TNF-α treatment (bottom), representative of four independently conducted experiments. Scale bar, 100 µm. c, Flow cytometry of HeLa nuclei stained 
with p65inCITE-Ab followed by Alexa Fluor 647 secondary antibody (x axis) sampled from NT (blue) or 40 min after TNF-α treatment (red). Buffers, from top 
to bottom: optimized inCITE buffer with dextran sulfate, commercial buffer 1, commercial buffer 2 (Methods). d, Distribution of p65 levels (nCLR, y axis) 
in NT (blue) and TNF-α-treated (red) nuclei profiled by inCITE-seq (P = 4 × 10−9, two-sided KS test). e, Expression (z score, colored heatmap) of the top 
seven genes (rows) positively associated with p65 levels identified by a linear model (top, Methods) across nuclei (columns), visualized for the top decile 
(p65hi) and bottom decile (p65lo) of p65 nuclear protein levels by inCITE-seq (bar plot, top, nCLR). f, Top ten gene ontology terms (y axis) significantly 
enriched (−log10 (P value), x axis, hypergeometric test) in 142 genes positively associated with p65 levels.
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We used inCITE-seq to profile 10,014 single nuclei from NT 
and TNF-α-treated HeLa cells that were stained with p65inCITE-Ab 
(without sorting) and barcoded for multiplexing with nucleus 
hashing39 (Methods). Antibody levels estimated as counts of 
antibody-derived tags (ADTs)13 were normalized by counts of 
the nucleus hashtag (hashtag oligonucleotides (HTOs)) to yield 
nuclear ADT (nADT) units in order to account for differences in 
poly-dT capture on beads (Extended Data Fig. 1f), which were then 
log scaled to nuclear centered log ratios (nCLRs)13,44 (Methods). 
Sequencing-derived levels of nuclear p65 differed significantly 
across NT and TNF-α-treated populations (Fig. 1d; P = 4 × 10−9, 
two-sided Kolmogorov–Smirnov (KS) test), confirming that 
quantitative protein detection by inCITE-seq can distinguish 
altered cell state due to treatment. The quality of the associated 
snRNA-seq profiles was comparable to that of snRNA-seq data 
from the human-derived HEK cell line45, as reflected by the 
number of unique transcripts (UMIs) and genes (Extended Data 
Fig. 1g; median number of UMIs and genes, 2,655 and 1,158 for 
inCITE-seq; 1,159 and 812 for snRNA-seq of HEK cells).

Relating genome-wide expression to p65 protein levels. To iden-
tify genes for which RNA expression was associated with p65 levels, 
we used a linear model to fit each gene’s expression as a function 
of continuous p65 levels, while controlling for cell cycle and tech-
nical variates (UMIs and HTOs), which identified 142 genes posi-
tively associated with p65 levels (false discovery rate (FDR) of 1%; 
Methods). These genes included well-known NF-κB targets CXCL8, 
NFKBIA and TNFAIP3 (Fig. 1e), and were enriched for pathways 
such as cytokine response (Fig. 1f; P < 3 × 10−9, two-sided hypergeo-
metric test, Methods).

Notably, levels of p65 protein and its encoding transcript RELA 
did not correlate well (Pearson r2 = 0.0008, P = 0.004; Extended Data 
Fig. 1h). This was expected at our stimulation time scale of 40 min, 
as RELA expression peaks ~4 h after induction of the NF-κB pathway 
by lipopolysaccharide but is largely unchanged at 40 min, in contrast 
to other p65 target genes such as NFKBIA11 (Extended Data Fig. 1i). 
RELA and p65 levels were also uncorrelated in untreated cells at 
steady state (NT, r2 = 0.001, P = 0.032), which confirmed known dif-
ferences in mRNA and protein kinetics for this gene. At baseline, 
RELA transcripts are reported to be produced at 12 copies per min-
ute and degraded at 102.4 copies per minute10, while p65 is trans-
lated at 0.9 proteins per mRNA per minute and degraded at 4 × 10−4 
proteins per minute11. Our own observation supports prior stud-
ies showing fast mRNA degradation but slow protein-degradation 
kinetics, which further underscores the importance of obtaining 
protein measurements. In sum, we show that inCITE-seq accurately 
quantifies nuclear protein and RNA levels that can be integrated to 
identify putative targets of a TF.

inCITE-seq profiling of the mouse brain after in vivo induc-
tion of seizure. Next, we turned to an in vivo setting and applied 
inCITE-seq to characterize the mouse hippocampus during the 
early response to seizure, which involves neuroinflammation 
and oxidative stress, affecting multiple cell types and pathways46. 
Seizures were induced by treatment with kainic acid (KA), a glu-
tamatergic agonist used in models of temporal lobe epilepsy47. As 
the complexes NF-κB and AP-1 are involved in neuroinflammation, 
synaptic remodeling and signal transduction of glutamate recep-
tors48–50, we characterized how their components p65 and c-Fos are 
linked to gene expression in early response to seizure. In addition, 
we added two nuclear cell type markers, the pan-neuronal marker 
and regulator of alternative splicing NeuN51 and the TF and microg-
lial lineage marker PU.1 (ref. 52). Altogether, we used inCITE-seq to 
profile single nuclei from the hippocampus 2 h after KA treatment 
with multiplexed measurements of the proteins p65, c-Fos, NeuN 
and PU.1 (Fig. 2a and Methods).

Antibody validation and optimization for inCITE-seq in the 
mouse brain. inCITE conjugated antibodies were first validated by 
flow cytometry on stained nuclei that were extracted from frozen 
mouse hippocampus. Cell type markers NeuN and PU.1 labeled 
subpopulations at the expected proportions (58.3% and 2.9% of 
all nuclei, respectively), with PU.1 specific to microglia (PU.1hi in 
CD11bhiCX3CR1hi populations but not in CD4hi cells; Extended 
Data Fig. 2a–c). Levels of p65 were bimodal, and c-Foshi nuclear 
subsets were elevated from 0.21% to 48.7% in KA-treated samples 
as anticipated from neuronal activity (Extended Data Fig. 2d–f). 
Antibody signals varied across a wide range of concentrations, 
underscoring the importance of choosing an appropriate concen-
tration regime53 (Extended Data Fig. 3).

Antibodies suitable for inCITE-seq should detect epitopes in fro-
zen tissue after minimal fixation. We therefore expect antibodies that 
are optimized for flow cytometry, immunocytochemistry or even 
immunoprecipitation to be compatible with inCITE-seq, while those 
optimized for heavily fixed tissues (for example, formalin-fixed 
paraffin-embedded tissue) may not be suitable. As an example, we 
compared two different antibodies targeting each of NeuN, PU.1 
and c-Fos in tissues that were frozen immediately versus tissues after 
overnight fixation in 4% paraformaldehyde (PFA), which revealed a 
stark contrast in epitope detection (Extended Data Fig. 4); for exam-
ple, one version of a c-Fos-specific antibody was unable to detect 
epitopes in frozen tissue, while another version used for inCITE-seq 
exhibited clean epitope detection in frozen tissue but not in tissue 
fixed overnight. To validate antibodies for inCITE-seq, we recom-
mend conducting flow cytometry of antibody stains on nuclei iso-
lated from frozen tissues of interest and in situ immunofluorescence 
of frozen sections (post-fixed) to help determine cell types and fea-
tures that express protein targets (Extended Data Figs. 3 and 4).

RNA profiles from inCITE-seq reveal key cell subsets of the 
mouse hippocampus. Profiling 24,444 nuclei from control (PBS) 
and KA-treated mice with inCITE-seq yielded RNA profiles that 
captured all major cell types of the hippocampus. Compared to 
standard snRNA-seq of the mouse hippocampus from a matched 
experiment and from another study using the same nuclear extrac-
tion protocol54, RNA profiles from inCITE-seq were reduced in 
quality, with a 6.2-fold and 4.8-fold reduction in the median UMI 
and gene counts, respectively (Extended Data Fig. 5a). Despite the 
loss in complexity, unsupervised clustering using snRNA-seq pro-
files from inCITE-seq alone still discerned major cell types of the 
hippocampus by post hoc annotation with known cell type mark-
ers54,55 (after addressing ambient RNA56, batch correction, and 
regressing out treatment; Extended Data Fig. 5b,c and Methods).

Cell cluster separation was substantially improved by jointly 
embedding single-nucleus RNA profiles from inCITE-seq and 
snRNA-seq, including data from a published study54. Unsupervised 
clustering with variable genes identified jointly across 37,767 
high-quality nuclei (22,260 nuclei from inCITE-seq and 15,507 
nuclei from snRNA-seq) showed 16 well-delineated clusters, each 
with contributions from both assays, with robust mixing across 
batches and treatment, and well annotated post hoc using known 
cell type markers (Fig. 2b,c, Extended Data Fig. 5d–j and Methods).

Protein levels match cell type-specific and condition-specific 
expression in RNA-based clusters. Nuclear protein levels mea-
sured by inCITE-seq differed across RNA-defined cell types as 
expected. As before, protein counts were normalized by nuclear 
HTO counts and then scaled to centered log ratios within each 
batch (that is, using batch-specific geometric means) to account for 
systematic batch differences (Extended Data Fig. 6). NeuN levels 
were elevated in neuronal clusters as expected (Fig. 2d,e; P = 0.005, 
two-sided KS test); ambient NeuN levels in subpopulations of other 
clusters may be due to high expression of NeuN in this tissue or 

NAtuRE MEtHoDs | VOL 18 | OCTOBER 2021 | 1204–1212 | www.nature.com/naturemethods1206

http://www.nature.com/naturemethods


ArticlesNaTurE METHoDS

reflect background signal (such as ambient RNA or doublets that 
were missed in filtering). Levels of PU.1, the microglial marker and 
a lineage-specifying TF, were significantly higher in microglia than 

those in neurons (Fig. 2f; P = 10−5, two-sided KS test). Expression 
of p65 was enriched in endothelial nuclei (Fig. 2g,h; P = 1.1 × 10−15, 
two-sided KS test), which was confirmed by immunohistochemistry  
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with the endothelial marker CD31 (Fig. 2i, CD31+p65+, yellow 
arrowheads), and p65 was also expressed at lower levels in neurons 
(Fig. 2i, NeuN+p65+, green arrowheads).

KA treatment induced c-Fos expression, with variations 
across neuronal subtypes. We observed widespread expression of 
inCITE-seq-derived nuclear c-Fos (Fig. 3a), with significant upregu-
lation in neurons after KA treatment (Fig. 3b; P = 10−15, two-sided 
KS test). Subsets of neurons differed in c-Fos levels, such that nuclei 
from cornu ammonis (CA) neurons had lower levels than those 
from granule cells of the dentate gyrus (DG) (Fig. 3c; P = 1.7 × 10−7, 
two-sided KS test). By contrast, p65 levels did not change after KA 

treatment at this time scale (Fig. 3d) as expected49. These patterns 
were confirmed by immunofluorescence, showing that c-Fos is 
expressed in multiple neuronal types, including DG granule cells, CA 
neurons and somatostatin (SST+) interneurons, with higher c-Fos 
intensity in granule cells than that in CA neurons (Fig. 3e,f) and no 
change in p65 levels due to treatment (Fig. 3g). Overall, inCITE-seq 
quantitatively measured nuclear protein levels that reflected diverse 
levels of activity-regulated TFs across cell types and treatment.

Relating protein and mRNA levels of inCITE target genes. 
Relating mRNA and protein levels of inCITE target genes revealed 
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scale bar, 600 µm. Right, close-up of the DG (dashed box) shows heterogeneity in c-Fos intensity; scale bar, 100 µm. f, Stain of SST (red), c-Fos (green) 
and DAPI (blue). Left, scale bar, 100 µm. Right, close-up of the DG (dashed box); scale bar, 30 µm. g, Immunofluorescence stains of p65 (red), NeuN 
(green) and DAPI (blue); PBS or KA treatment. Left, all stains. Right, p65 only. Scale bar, 100 µm. h, Distribution of mRNA levels (z score of log-normalized 
counts, y axis) in nuclei with high or low levels (defined in Extended Data Fig. 6) of the encoded protein (x axis) after PBS (gray) or KA (green) treatment. 
For the box plot, the center line indicates the median, box bounds represent first and third quartiles, and whiskers span from each quartile to the minimum 
or the maximum (1.5× interquartile range below 25% or above 75% quartiles). Dots, nuclei with non-zero mRNA levels measured across n = 2 biologically 
independent samples, with 1,696 nuclei, 214 nuclei and 653 nuclei shown for Fos, Rela and Rbfox3, respectively. Significance from bottom-left to top-right: 
P = 2 × 10−6, P = 9 × 10−5, P = 4 × 10−6, P = 9.7 × 10−3, two-sided Mann–Whitney test. NS, not significant.
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a wide range of regulatory dynamics. We compared transcript and 
protein levels across nuclei with ‘high’ or ‘low’ protein levels that 
were categorized using batch-specific thresholds (Extended Data 
Fig. 6a–d) and assessed how treatment impacted their relationship 
(Fig. 3h). Transcript levels of the activity-regulated gene Fos were 
elevated in populations with high protein levels (c-Foshi) compared 
to those in c-Foslo populations (P = 9 × 10−5, two-sided Mann–
Whitney test) but only after PBS treatment, whereas Fos mRNA 
was highly expressed after KA treatment regardless of c-Fos pro-
tein levels. This is consistent with a model where c-Fos positively 
regulates its own transcript, expression of which is already satu-
rated after treatment at this time scale57 and when the downstream 
effect of mRNA induction on protein levels is not yet observable. By 
contrast, NeuN and its encoding transcript Rbfox3 were inversely 
associated (P < 0.01, two-sided Mann–Whitney test); although 
unspliced, intron-retaining pre-mRNA levels of Rbfox3 (esti-
mated by Velocyto27, Methods) were upregulated by KA treatment 
(Extended Data Fig. 7a). This is consistent with other RNA-binding 
proteins that negatively regulate their own expression via intron 
retention58. Rela mRNA levels did not differ across p65 protein levels 
(Fig. 3h, P = 1, two-sided Mann–Whitney test), and Spi1 transcripts 
(encoding PU.1) were not detected, underscoring the importance 
of protein measurements as a complement to RNA measurements, 
particularly for TFs for which the corresponding RNA is often lowly 
expressed59.

Modeling genome-wide association with each protein recovers  
known TF targets. We devised an approach to infer the puta-
tive genome-wide impact of each TF on gene expression based 
on nuclear protein levels. As concentrations of TFs in the nucleus 
shape gene expression8,9, we modeled gene expression as a func-
tion of protein levels. To first identify global impacts of TFs, we 
modeled each gene’s RNA as a linear combination of the four pro-
teins (c-Fos, p65, PU.1, NeuN) after regressing out contributions 
of cell type (cluster), treatment and their interaction to account 
for collinearity (especially between KA treatment and c-Fos  
levels; Methods). Genes significantly associated with each of the 
three TFs were interpreted as putative TF-regulated genes, with 
the effect size estimated by their coefficients. TF-associated genes 
comprised known targets and pathways (Fig. 4a–c and Extended 
Data Fig. 7b), with PU.1-associated genes including direct regula-
tory targets and known microglial markers, for example, Trem2, 
Tyrobp and C1qa60, and c-Fos-associated genes including known 
targets Npas4, Nr4a1, Homer1 and its own transcript Fos, that reflect 
activity-induced upregulation35. Although our model also identified 
NeuN-associated genes (Extended Data Fig. 7c), we reasoned that 
these genes could reflect direct changes in transcript levels via splic-
ing or indirect effects of a generally transcriptionally active state of 
the nucleus, as NeuN is associated with decondensed chromatin 
and enlarged nuclei61.

TF-associated genes are coexpressed as distinct modules in 
excitatory neurons. Next, we probed how expression profiles of 
TF-associated genes relate to each other by their coexpression pat-
terns. Focusing on the broad type of excitatory neurons (EX neu-
rons), we again modeled each gene as a linear combination of the 
four proteins after regressing out treatment within only EX neu-
rons (Methods and Fig. 4d). We then clustered the differentially 
expressed genes (DEGs) associated with c-Fos and p65 levels based 
on the correlation of their coexpression across all nuclei of EX neu-
rons. Genes associated with c-Fos or p65 levels were coexpressed 
as distinct modules, such that each module reflected a unique set 
of inferred TF effects (Fig. 4e). Specifically, modules 3 and 4 cor-
responded to a positive c-Fos effect, modules 1 and 2 corresponded 
to a negative and positive p65 effect, respectively, and module 5 cor-
responded to a mixture of both c-Fos and p65 effects.

We hypothesized that widespread weak correlations between 
c-Fos- and p65-associated genes (Fig. 4e, dashed gray box) may 
reflect interactions between these two TFs, as their complexes 
AP-1 and NF-κB are known to interact62,63. To test for protein–pro-
tein interactions, we re-implemented our model with interaction 
terms (c-Fos*p65, c-Fos*NeuN and p65*NeuN), which uncovered 
56 genes associated with c-Fos*p65 that were also coexpressed 
as a module (Extended Data Fig. 8a,b and Methods). Of these 56 
genes, only 11 were associated with c-Fos or p65 alone in the previ-
ous model (genes marked by a red asterisk in Fig. 4e), suggesting 
that these genes may uniquely reflect direct or indirect regulation 
that requires both c-Fos and p65 to be highly expressed in a cell. 
Although we caution against overinterpretation of the specific genes 
due to the limited size of our data and subsequently underpowered 
analyses, we demonstrate that, as a proof of concept, we can use 
protein-combination measurements to infer gene modules reflect-
ing TF combinations versus individual TFs.

The association between gene modules and inferred TF effect 
types prompted us to ask whether gene programs that are nor-
mally identified from expression alone64 align with protein effects. 
Using non-negative matrix factorization (NMF) on RNA profiles 
alone, we identified five gene programs in EX neurons (Fig. 4f and 
Methods), some of which were upregulated in response to treatment 
(Extended Data Fig. 8c). Coexpression patterns of the top ten genes 
of each program revealed that each program also coincided with 
the different types of TF effects (Fig. 4g). Altogether, our approach 
allows quantifying the associations between TFs and gene expres-
sion modules or pathways, and even disentangling contributions 
of TF combinations, which can increase the interpretability of gene 
expression programs.

To assess whether each TF could play a direct or indirect role 
in regulating their associated DEGs, and identify other TFs that 
may be involved in co-regulation, we analyzed the cis regulatory 
TF motifs enriched in the enhancer regions of c-Fos-associated 
and p65-associated genes. Using enhancers defined by differentially 
accessible regions (DARs) that were profiled in the hippocampus of 
saline- or KA-treated mice65, we identified TF motifs significantly 
enriched each gene set (c-Fos and p65 DEGs from the additive 
model; c-Fos*p65 DEGs from the interaction model; Methods). 
Observed TF motifs included components of the AP-1 complex 
(Fos, JunB and JunD), activity-regulated TFs Egr1 and Egr3, and 
Atf2 which is phosphorylated by c-Jun in KA-induced seizure mod-
els66 (Fig. 4h and Extended Data Fig. 9a). Additionally, the enrich-
ment of Smarcc1, part of the chromatin remodeling BAF (SWI/SNF) 
complex, in c-Fos DEGs was consistent with the key role of AP-1 
in recruiting the BAF complex for chromatin remodeling67. RNA 
transcripts of these TFs were lowly expressed in our data (Fig. 4i). 
As the widespread presence of AP-1 motifs likely reflected the role 
of AP-1 itself in chromatin remodeling following KA treatment65,67, 
we additionally examined TF motifs enriched in DEGs compared 
to other enhancers upon KA treatment (Extended Data Fig. 9b,c). 
Notably, motifs of NF-κB components (encoded by Rel, Rela, Relb, 
Nfkb1, Nfkb2) were not significant. This suggests that TF-associated 
genes in our analysis may also reflect indirect effects of each TF, or 
that direct effects occur at a different time scale in the case of p65, 
or depend on the direction of the TF effect (that is, downregulated 
versus upregulated).

Inferred TF impact on genes depends on treatment context and 
cell type. Finally, we analyzed whether TF impact on genome-wide 
expression depended on the treatment context. To assess the global 
treatment impact, we modeled RNA levels as a linear combination 
of the four proteins separately within each treatment (PBS or KA) 
and compared their effects on each gene across treatments (Methods 
and Extended Data Fig. 9d). The impact of p65 on gene expression 
was largely consistent across PBS and KA treatments as reflected 
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by correlated effect sizes (R2 = 0.03, P = 6 × 10−82). By contrast, c-Fos 
effects varied by treatment (R2 = 0.0001, P = 0.21). Genes associated 
with c-Fos only upon KA treatment included Ptgs2 (encoding cyclo-
oxygenase 2, COX-2), a responder to oxidative stress after trau-
matic brain injury68. Additionally, we show that cell type-specific 
TF effects upon KA treatment can be identified, as a proof of con-
cept33,36 (Methods and Fig. 4j). Altogether, our results demonstrate 
that the direct or indirect regulatory impact of TFs on individual 
genes can depend on cell type and environmental context.

Discussion
inCITE-seq reliably measures quantitative protein and RNA levels 
in individual nuclei, offering a means to better understand the rela-
tionship between regulatory proteins and their target genes during 
dynamic responses in the native context of tissues. Nuclear protein 
levels can be used as an interpretable and mechanistic link bridg-
ing regulatory proteins and their genome-wide effects, and enable 
cell type-specific studies of signaling pathways in complex tissues 
in vivo. While numerous multimodal methods measure intracel-
lular protein targets15,16,19, proteins in the cytoplasm carry different 
information than those in the nucleus, as in the case of regulatory 
proteins and translocating TFs; buffers used for intracellular and 
cytoplasmic targets may result in high background levels for nuclear 
targets (Fig. 1c). Furthermore, nucleus-based multimodal profil-
ing surmounts key technical challenges to enable characterization 
of cells from solid tissues that are either difficult to dissociate or 
archived in frozen form, especially clinical specimens from human 
disease studies such as cancer and neurodegeneration. inCITE-seq 
is particularly well suited for studying proteins in pathways that 
are affected by cellular dissociation protocols, for example, the 
activity-regulated TF c-Fos.

Antibodies compatible with inCITE-seq should recognize epit-
opes in frozen tissues after light fixation. We recommend validat-
ing antibodies by flow cytometry and in situ immunofluorescence 
on frozen tissues (Extended Data Figs. 3 and 4). Jointly embedding 
RNA profiles from inCITE-seq and standard snRNA-seq should 
help in discerning clusters despite the currently lower RNA com-
plexity of inCITE-seq data. In the future, computational methods 
that tackle ambient RNA and batch effects through principled 
modeling, such as CellBender56 and totalVI69, could be adapted to 
denoise ambient nuclear protein expression. Transfer learning from 
inCITE-seq to snRNA-seq may also be used to predict protein levels 
in snRNA-seq datasets collected without protein measurements.

For refined understanding of gene regulation in tissues dur-
ing dynamic response, inCITE-seq can be applied with antibodies 
targeting phosphorylated forms of TFs in samples collected across 
time. Future studies can combine inCITE-seq with other modalities,  
such as metabolic labeling70–72, and joint RNA and chromatin 
accessibility profiles73, coupled with spatial inference74. Our intra-
nuclear staining conditions could also be readily adapted to enrich  
for snRNA-seq of subpopulations based on marker proteins75. By 
measuring TFs simultaneously, inCITE-seq opens the way to deci-
pher complex phenotypes and regulatory mechanisms in develop-
ment when TF combinations are key to defining cell type diversity or 
to disentangle interacting pathways. Multiplexed profiling of signal-
ing proteins will enable deciphering changes in activity states, which 
could be used to recover the impact of ligands acting on multiple 
receptors across cell types in tissues, and where genome-wide asso-
ciation studies highlight the role of variants in regulatory regions by 
monitoring protein targets alongside gene expression changes.
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Methods
Mice. C57BL/6J (JAX 000664) mice were purchased from Jackson Laboratory and 
bred in house. Male mice were used at ~8 weeks of age. All mice were maintained 
under SPF conditions on a 12-h light–dark cycle at an ambient temperature of 
21.5 ± 1 °C with relative humidity between 30% and 70% and were provided food 
and water ad libitum. All mouse experiments were approved by and performed in 
accordance with the Institutional Animal Care and Use Committee guidelines at 
Weill Cornell Medicine.

Cell culture. HeLa-TetR-Cas9 cells expressing a p65–mNeonGreen reporter 
construct (gift from J. Schmid-Burgk (Broad Institute, currently at Universität 
Bonn); original cell line source, I. Cheeseman, MIT40,41) were cultured at 37 °C 
with 5% CO2 in DMEM with high glucose, pyruvate, GlutaMAX (Thermo Fisher 
Scientific, 10569010), heat-inactivated FBS (Thermo Fisher Scientific, 16000044) 
and 100 U ml−1 penicillin–streptomycin (Thermo Fisher Scientific, 15140163). 
For immunohistochemistry, cells were seeded on poly-l-lysine-treated #1.5 glass 
coverslips (Thomas Scientific, 1217N81) in six-well plates at a density of ~5 × 104 
cells per ml 24 h before TNF-α stimulation. For inCITE-seq, HeLa cells were 
seeded in 10-cm Petri dishes at least 24 h before TNF-α stimulation and were 
assayed at 70–80% confluence.

Stimulation of HeLa cells with TNF-α. HeLa cells were stimulated by adding 
medium containing TNF-α at final concentration of 30 ng ml−1 and were 
incubated at 37 °C for 40 min to induce translocation of p65 into the nucleus. 
TNF-α-containing medium was aspirated, and cells were washed with 1× PBS. 
We then added 2 ml EZ lysis buffer (Sigma-Aldrich, N3408), scraped cells, and 
transferred lysates into a 15-ml Falcon tube for nuclear extraction.

Injection of mice with kainic acid. Eight-week-old male mice were acclimated 
in the procedure room for 1 h beforehand and then injected i.p. with either PBS 
or 20 mg per kg KA (Sigma, K0250) dissolved in PBS. All animals were observed 
continuously for 2 h and scored using a modified Racine scale (stages 0–6)76; any 
mice that did not reach at least stage 1 (immobility and rigidity) by 30 min after 
KA treatment were given an additional injection of 10 mg per kg KA to facilitate 
seizure activity. After 2 h, mice were euthanized with CO2, 20 ml PBS was perfused 
through the left ventricle, and the entire brain was removed. The hippocampus was 
then dissected on ice before freezing on dry ice.

Immunohistochemistry of HeLa cells. Coverslips (#1.5, 18 mm, Thomas 
Scientific, 1217N81) treated with poly-l-lysine were seeded with HeLa cells in 
six-well plates and stimulated with TNF-α as described previously. Wells were 
washed with PBS, fixed with 4% PFA at room temperature (RT) for 15 min 
then washed three times with PBS. For subsequent steps, coverslips were placed 
with cells facing down on a sheet of Parafilm, such that solutions (100 µl) 
were sandwiched between the coverslip and Parafilm. Cells were blocked and 
permeabilized at RT for 30 min (1× PBS, 5% normal goat serum, 0.3% Triton 
X-100), incubated with 1:200 p65Ab (BioLegend, 622601) in antibody solution 
(5% BSA, 0.02% Tween-20 in 1× PBS) for 1 h at RT and washed three times with 
PBST (1× PBS, 0.02% Tween-20). Anti-rabbit Alexa Fluor 647 secondary antibody 
(Invitrogen, A27040) was added at 1:1,000 in PBST for 1 h in the dark at RT, and 
then samples were washed four times with PBST, and the final wash contained 
1:1,000 DAPI. Coverslips were mounted onto Superfrost slides (Fisher Scientific, 
22-037-246) with antifade (Thermo Fisher Scientific, S36937) and sealed with nail 
polish. Slides were stored at 4 °C until imaging.

Immunohistochemistry of the mouse hippocampus. Mice were euthanized 2 h 
after injection of PBS or KA and perfused through the left ventricle with 20 ml 
PBS. The entire brain tissue (CNS) was removed and then immersed in OCT 
and quickly frozen on dry ice. Tissue was sectioned at 10 µm using a cryotome 
and collected on slides, which were frozen on dry ice and stored at −30 °C until 
further use. Slides were removed from storage and fixed with 4% PFA for 10 min 
at RT, washed with PBS and then blocked (PBS containing 0.1% Triton X-100, 
5% normal donkey serum and 5% normal goat serum) for 30 min at RT. Sections 
were incubated with the following primary antibodies at the indicated dilution in 
blocking buffer overnight at 4 °C: anti-NeuN (BioLegend, 1B7, 834502, 1:1,000), 
anti-p65 (BioLegend, Poly6226, 622601, 1:200), anti-c-Fos (BioLegend, Poly6414, 
641401, 1:200), anti-CD31 (eBioscience, 390, 14-0311-82, 1:200). Sections were 
then washed three times with PBS before incubation with secondary antibodies 
(Jackson ImmunoResearch, donkey anti-rabbit AF647, 711-605-152; donkey 
anti-rabbit AF594, 711-585-152; donkey anti-mouse AF488, 715-545-150; donkey 
anti-rat AF647, 712-605-153) at 1:500 in blocking buffer for 1 h at RT. Sections 
were washed once with PBS, once with PBS containing DAPI and a final time with 
PBS before mounting (ProLong Diamond Antifade, Thermo Fisher). Slides covered 
with coverslips were dried overnight, sealed with clear nail polish and imaged.

For immunohistochemistry of mouse hippocampal sections from fixed brains, 
mice were perfused with 20 ml PBS followed by 20 ml 4% PFA. The entire brain 
was removed, and brain tissue was incubated in 4% PFA overnight before washing 
three times with 10 ml PBS. Brain tissue was dehydrated in 30% sucrose in PBS 
overnight and then embedded and frozen in OCT. Sections were processed in the 

same manner as that described above but without the 10-min post-cut fixation in 
4% PFA. Antibodies used for the fixed versus frozen brain comparison in Extended 
Data Fig. 4 are anti-c-Fos (Abcam, ab190289), anti-NeuN (Abcam, ab190565) and 
anti-PU.1 (Cell Signaling Technology, 2258).

Microscopy. HeLa cells and mouse hippocampal sections were imaged on an 
Olympus Fluoview FV1200 biological confocal scanning microscope at 20× or 
40× (Olympus, LUCPLFLN) with sequential laser emission and Kalman filtering. 
Images were processed with ImageJ.

Flow cytometry analysis of PU.1 staining in microglial suspensions. Mice were 
euthanized with CO2 and perfused through the left ventricle with 20 ml PBS. The 
whole brain was removed and placed in 2.5 ml digestion buffer (PBS, 5% FCS, 
1 mM HEPES) before being finely chopped. Collagenase D (Roche, 400 U) was 
added to the mixture, which was then incubated at 37 °C for 30 min before adding 
50 μl 0.5 M EDTA, followed by a 5-min incubation. Digested tissue was mashed 
through a 40-µm cell strainer, pelleted at 700g in a swinging-bucket centrifuge 
and then resuspended in 10 ml 38% isotonic Percoll and centrifuged at 2,000 r.p.m 
for 30 min with no brake. The myelin debris layer was removed by aspiration, 
and the pellet was washed with PBS. Cells were then blocked with 1:100 FcX 
(BioLegend, 156604) before a 15-min incubation with the following antibodies 
at a 1:200 dilution in PBS: anti-CD45.2-FITC (eBioscience, 104, 11-0454-82), 
anti-CD4-BUV395 (BD, GK1.5, 563790), anti-CD11b-BV421 (BioLegend, M1/70, 
101235), anti-CX3CR1-APC (BioLegend, SA011F11, 149008). Cells were washed 
with PBS and then fixed and permeabilized using the Foxp3/Transcription  
Factor Staining Buffer Set (eBioscience) before staining with anti-PU.1-PE 
antibody (BioLegend, 7C2C34, 681307) or rat anti-IgG2a-PE isotype (BioLegend, 
RTK2758, 400507) for 30 min at RT. Cells were washed once, resuspended,  
run on an LSRFortessa cytometer (BD Biosciences) and analyzed with FlowJo 
software (Tree Star).

Nuclear extraction. Nuclei from tissue or cell lines were extracted using EZ Prep 
(Sigma-Aldrich, N3408) and the Glass Dounce kit (Sigma-Aldrich, D8938) as 
previously described2. Briefly, cells or frozen tissue were placed in 2 ml EZ lysis 
buffer containing Recombinant RNase Inhibitor (Takara Bio, 2313A) and dounced 
24 times with pestle A and then 24 times with pestle B. Nuclear suspensions were 
transferred to 15-ml Falcon tubes, an additional 3 ml EZ lysis buffer was added, 
and suspensions were incubated on ice for 5 min, pelleted (500g for 5 min at 4 °C) 
with a swinging-bucket centrifuge, resuspended in 5 ml EZ lysis buffer with a 
P1000 pipette, incubated on ice for 5 min and pelleted as in the previous step. 
Nuclei were then resuspended in 1 ml prechilled buffer (1× PBS, 3 mM MgCl2, 
Recombinant RNase Inhibitor (Takara Bio, 2313A)) and filtered through a 35-µm 
flow cytometry tube (Falcon, 352235).

Intranuclear antibody staining of nuclear suspensions. Nuclei were 
simultaneously fixed and permeabilized by adding 3 ml 1.33% FA–NT (1.33% 
formaldehyde, 0.2% NP-40, 0.1% Tween-20, 3 µl glacial acetic acid) to 1 ml nuclei 
suspended in PBS with 3 mM MgCl2. Samples were incubated for 10 min at 4 °C 
with rocking. Fixation was quenched by adding 3 µl of 1 M glycine and then 
immediately filtering through a 20-µm strainer (pluriSelect, 431002040). Nuclei 
were pelleted in a swinging-bucket centrifuge at 850g for 5 min at 4 °C (centrifuge 
condition for all subsequent spins) and then resuspended in 500 µl blocking buffer 
(see below) and incubated for 15 min at 4 °C with rocking and pelleted. Pellets were 
resuspended in 200 µl blocking buffer containing primary antibodies and incubated 
at 4 °C for 1 h with rocking. Primary antibody concentrations were as follows: 
p65Ab (raised in rabbit) at 1:400, p65inCITE-Ab (raised in rabbit) at 1:400, c-FosinCITE-Ab 
(raised in rabbit) at 1:400, NeuNinCITE-Ab (raised in mouse) at 1:500, PU.1inCITE-Ab 
(raised in rat) at 1:200. Nucleus-hashing antibodies (BioLegend, 682213, 682215) 
were simultaneously added to each sample at 1:200. After incubation, nuclei were 
pelleted, washed twice with 500 µl 0.2% PBST with Recombinant RNase Inhibitor, 
incubated for 5 min and repelleted. Nuclei were then either resuspended in 300 µl 
1× PBS to prepare for loading on the 10x Genomics Chromium instrument 
(below) or resuspended in 200 µl blocking buffer with secondary antibodies at 
1:1,000 and 10× DAPI, incubated in the dark at 4 °C for 30 min, washed twice 
as previously described, resuspended in 0.2% PBST with Recombinant RNase 
Inhibitor and filtered through a 20-µm strainer (pluriSelect, 431002040) for flow 
cytometry.

Antibodies used were p65Ab or p65inCITE-Ab (BioLegend, Poly6226, 622601), 
c-FosinCITE-Ab (BioLegend, Poly6414, 641401), NeuNinCITE-Ab (BioLegend, 1B7, 
834502) and PU.1inCITE-Ab (BioLegend, 7C2C34, 681307).

Blocking buffers used are described as follows:
•	 Optimized inCITE-seq buffer: 1:100 FcX (BioLegend, 156604), 1% UltraPure 

BSA (Thermo Fisher Scientific, AM2618), 0.05% dextran sulfate, 0.2% 
Tween-20 and Recombinant RNase Inhibitor in 1× PBS. Dextran sulfate 
may be substituted with a 1:200 dilution of HCR probe hybridization buffer 
(tissue-section format) from Molecular Instruments.

•	 Intranuclear stain buffer used for p65Ab in Extended Data Fig. 1c: 1:100 FcX 
(BioLegend, 156604), 1% UltraPure BSA (Thermo Fisher Scientific, AM2618), 
0.2% Tween-20 and Recombinant RNase Inhibitor in 1× PBS.

NAtuRE MEtHoDs | www.nature.com/naturemethods

http://www.nature.com/naturemethods


Articles NaTurE METHoDS

•	 Commercial intracellular buffer 1 in Fig. 1c: Intracellular Staining Permeabili-
zation Wash Buffer (BioLegend, 42100), used according to the manufacturer’s 
instructions.

•	 Commercial intracellular buffer 2 in Fig. 1c: eBioscience Permeabilization 
Buffer (Thermo Fisher, 00-8333-56), used according to the manufacturer’s 
instructions.

inCITE antibodies. Pure clones of all antibodies were conjugated with the 
TotalSeq-A format (BioLegend).

inCITE-seq. Antibody-stained nuclei were resuspended in PBS with 3 mM 
MgCl2, filtered through a 10-µm filter, counted in a hemocytometer and promptly 
loaded onto a Chromium single-cell V3 3′ chip (10x Genomics) according to the 
manufacturer’s protocol for GEM formation. For the HeLa experiment, a single 
V3 3′ 10x channel was loaded with 10,000 NT nuclei and 10,000 TNF-α-treated 
nuclei with nucleus hashing. For the mouse hippocampus experiment, two V3 
3′ 10x channels were loaded, each channel with 30,000 nuclei of a 1:1 mix of 
nucleus-hashed PBS-treated and KA-treated samples, such that, in total, n = 2 
PBS-treated samples and n = 2 KA-treated samples were loaded across two 
channels.

After GEM formation, simultaneous reverse cross-linking and reverse 
transcription were conducted by incubating GEMs at 53 °C for 45 min, followed 
by incubation at 85 °C for 5 min. Samples were stored at −20 °C until GEM 
recovery according to the manufacturer’s instructions. cDNA was amplified 
using the standard 10x Genomics single-cell 3′ V3 protocol (10x Genomics) with 
both HTO and ADT PCR additive primers included in the AMP mix at 0.1 µM 
and 0.2 µM, respectively. After amplification, antibody–oligonucleotide-derived 
cDNA fragments were separated from mRNA-derived cDNA through solid 
phase reversible immobilization (SPRI)-based size selection by incubating the 
cDNA amplification product in 0.6× SPRIselect (Beckman Coulter, B23319) for 
5 min at RT. At this stage, antibody–oligonucleotide-derived cDNA is contained 
in the supernatant, while mRNA-derived cDNA remains on SPRIselect beads. 
Supernatant containing antibody–oligonucleotide-derived cDNA was removed and 
separately stored for HTO and ADT library construction. SPRIselect containing 
mRNA-derived cDNA (WTA) was washed two times with 80% ethanol, eluted into 
40 µl elution buffer and stored for gene expression library construction.

Gene expression libraries were constructed from cleaned WTA (10 µl) using 
manufacturer-specific enzymatic fragmentation, adaptor ligation and sample index 
attachment and then eluted in 30 µl elution buffer according to the standard 10x 
Genomics single-cell 3′ V3 protocol. Samples were stored at −20 °C until library 
quantification and sequencing.

For HTO and ADT library construction, antibody–oligonucleotide-derived 
cDNA was mixed with 1.4× SPRIselect, incubated at RT for 5 min, incubated on a 
magnet for 5 min, washed twice with standard washes with 80% ethanol and eluted 
into 24 µl sterile ddH2O. Afterward, 6 µl eluted solution was added to one of two 
PCR solutions containing either a unique HTO or ADT index primer mix and 
NEBNext 2× Master Mix (New England Biolabs, M0541L) to construct separate 
HTO and ADT libraries. Libraries were constructed by PCR amplification with 
the following conditions: 98 °C for 5 min, 21 cycles at 98 °C for 2 s and 72 °C for 
15 s and a final step at 72 °C for 1 min. PCR products were purified with 2.0× SPRI 
beads with a 10-min incubation, a 5-min magnetic separation and two washes with 
80% ethanol. Purified products were eluted into 20 µl EB. Samples were stored at 
4 °C until library quantification and sequencing.

Gene expression and HTO and ADT libraries were quantified using a standard 
Qubit instrument (Thermo Fisher, Q32853) and the Agilent TapeStation (Agilent, 
G2991AA) to check for library size. Optimal library sizes were ~420 bp for gene 
expression and ~180 bp for ADT and HTO. Libraries were pooled and sequenced 
on the NextSeq 500 platform (Illumina) using a 75-cycle kit (read 1, 28 cycles; 
index 1, eight cycles; read 2, 55 cycles).

snRNA-seq of the mouse hippocampus. Nuclei were extracted from the 
hippocampus of PBS-treated (n = 1) and KA-treated (n = 1) mice as described 
above, resuspended in 1 ml chilled 1× PBS with 3 mM MgCl2 and filtered through 
a 10-µm filter, and nuclei were hashed per treatment as previously described 
and promptly loaded onto a Chromium single-cell V3.1 3′ chip (10x Genomics) 
according to the manufacturer’s protocol. A single V3.1 3′ 10x channel was loaded 
with 10,000 nuclei in a 1:1 mix of nucleus-hashed PBS and KA samples. cDNA and 
HTO libraries were generated and sequenced as previously described39.

inCITE-seq and snRNA-seq data preprocessing. Sequencing data were processed 
with Cell Ranger version 4.0.0 on Cumulus version 1.0 (ref. 77). Reads from 
demultiplexed FASTQ files were aligned to pre-mRNA annotated genomes of the 
mouse mm10 or human GRCh38 reference genome as previously described78. 
Hashed nuclei were demultiplexed using DemuxEM39 with parameters ‘min_num_
genes=10, min_num_umis=1, min_signal_hashtag=1’; nuclei with ambiguous 
treatment assignment (that is, nuclei not assigned to NT or TNF-α groups among 
HeLa nuclei or to PBS or KA groups among mouse hippocampal nuclei) were 
discarded (5.9% and 2.7% for HeLa and mouse, respectively); barcode collision rates 
are discussed elsewhere13,39,79. For mouse hippocampus data, raw counts across both 

channels were combined. Unspliced pre-mRNA and spliced mRNA counts were 
generated from BAM files using Velocyto version 0.17.17 (ref. 27). All gene expression 
matrices were analyzed by SCANPY (version 1.6.0)80. For inCITE-seq data, protein 
ADT counts corresponding to each nucleus or cell barcode were also added.

Analysis of gene expression. For HeLa data, genes in at least ten nuclei and nuclei 
with at least 500 genes and at most 5,000 UMI counts were retained, resulting in a 
matrix of 10,014 nuclei with 13,942 genes across both NT and TNF-α groups. For 
mouse hippocampus data, genes in at least three nuclei, and nuclei with at least 50 
genes and at most 900 or 1,200 UMI counts per replicate (batch 1 or 2, respectively) 
were retained; we then removed nuclei with mitochondrial gene content >5%, 
HTO counts greater than 5,000, and anti-c-Fos antibody counts exceeding 300 
ADT counts, resulting in a matrix of 41,332 nuclei with 20,679 genes. Gene counts 
were normalized within each nucleus and then log normalized as ln (x + 1).

Normalizing protein expression. Protein abundances measured by ADT were 
normalized by nuclear HTO counts after adding a pseudocount as in the equation 
nADT = (ADT + 1)/HTO and then scaled to centered log ratios (nuclear; ‘nCLR’) 
as in the equation nCLR = nADT/(∏inADTi)1/n, where the denominator is the 
geometric mean calculated as the nth root of the product ∏ across individual  
nuclei i. For mouse hippocampus data, nCLR scaling was conducted within each 
batch, such that batch-specific geometric means were used in the last term.

Clustering mouse hippocampus data using single-nucleus RNA profiles from 
inCITE-seq. 5,194 variable genes on log-normalized counts were selected using 
SCANPY’s ‘highly_variable_genes’ function (‘min_mean=0.004, max_min=0.08, 
min_disp=0.3’), log counts were scaled, and UMI counts and mitochondrial 
content were regressed out using SCANPY’s ‘regress_out’ function. Dimensionality 
reduction was performed with PCA on variable genes in SCANPY, followed by a 
PyTorch implementation of Harmony81 to correct for batch based on 10x channels 
and treatment (PBS and KA). A nearest-neighbor graph was constructed with 
k = 10 neighbors and the top 40 principal components, clustered with the Leiden 
algorithm and embedded using UMAP82, all in SCANPY.

Joint embedding of inCITE-seq and snRNA-seq mouse hippocampus profiles. 
snRNA-seq profiles of fixed nuclei with inCITE-seq data (n = 24,444 nuclei) 
were jointly embedded with snRNA-seq data from this study (n = 1,887) and 
from a published study54 (n = 15,001, WT only). In total, 7,541 variable genes 
were identified in a single joint analysis from log-normalized counts across all 
datasets using SCANPY’s ‘highly_variable_genes’ function (‘min_mean=0.004, 
max_min=0.08, min_disp=0.3’). Log counts were then scaled; UMI counts, 
mitochondrial content and sequencing assay type were regressed out with SCANPY’s 
‘regress_out’ function. Dimensionality reduction was performed on variable genes 
via PCA in SCANPY, followed by a Python implementation of Harmony81 to correct 
for batch based on 10x channels, to regress out differences due to treatment (PBS 
and KA) and to further correct for assay type. A k-nearest-neighbor graph was 
constructed with k = 10 neighbors and the top 40 principal components, clustered 
with the Leiden algorithm83 in SCANPY and embedded using UMAP82 in SCANPY. 
Unsupervised clusters were identified after accounting for treatment, batch and 
sequencing assay type. A cluster with high mitochondrial content (n = 327 nuclei) 
and a subcluster with low transcript abundance (n = 179) were removed; 3,059 
individual suspected doublets identified by Scrublet84 were removed. The final 
embedding consisted of n = 22,260 nuclear RNA profiles from inCITE-seq and 
n = 15,507 nuclear RNA profiles from standard snRNA-seq.

Genes associated with p65 protein levels in HeLa samples. Gene expression was 
modeled using a generalized linear model with a negative binomial fit as follows:

Yi ∼ p65 + G2Mscore + Sscore + log(UMI) + log(HTO),

where Yi is log normalized, unscaled ln (x + 1) counts for gene i, p65 is the p65 
protein level in units of nCLR, G2Mscore and Sscore are cell cycle scores calculated 
with ‘score_genes_cell_cycle’ in SCANPY using previously defined genes85, 
and log (UMI) and log (HTO) are natural log counts of unique RNA molecular 
identifiers and nuclear HTOs, respectively. Significance was established at an FDR of 
1% after Benjamini–Hochberg correction using the statsmodels package in Python.

Gene ontology analysis. Gene sets were queried using SCANPY’s ‘queries.
enrich’ module, a wrapper around g:Profiler86, to identify gene ontology biological 
processes. P values were calculated using a two-sided hypergeometric test, 
corrected for term and query size.

Genes globally associated with protein levels in the mouse hippocampus.  
We implemented a two-step mixed linear model using the statsmodel package  
in Python to account for collinearity, specifically between treatment and  
c-Fos protein levels. First, we modeled gene expression as shown in the  
following equation to regress out the effects of treatment and cell type:

Yi ∼ C(cluster) + C(treatment) + C(cluster) ∗ C(treatment)

+log(UMI) + log(HTO) + (1|B),
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where Yi is the scaled z score of ln (x + 1) counts for gene i across all nuclei, 
C(cluster) is a categorical (C) variable indicating cluster membership (cell type), 
C(treatment) is a categorical variable indicating PBS or KA treatment, log (UMI) 
and log (HTO) are natural log counts of unique RNA molecular identifiers and 
nuclear HTOs, and B is a categorical variable denoting the 10x channel batch. We 
then fit the residuals of each gene, rYi, as a linear combination of the four proteins, 
accounting for batch:

rYi ∼ NeuN + c−Fos + p65 + PU.1 + (1|B).

Genes in at least 15 nuclei were used for analysis, and significance was established 
at an FDR of 5% after Benjamini–Hochberg correction. For identifying 
treatment-dependent global effects, we implemented the two-step model separately 
within PBS-treated or KA-treated nuclei.

Genes associated with protein levels in the mouse hippocampus in excitatory 
neurons. Similar to the global approach, we first regressed out treatment:

Yi ∼ C(treatment) + log(UMI) + log(HTO) + (1|B),

where all variates are the same as those previously described. We then modeled 
residuals of each gene as a linear combination of the four proteins, accounting for 
batch. In the additive model, we used

rYi ∼ NeuN + c−Fos + p65 + PU.1 + (1|B)

and in the interaction model, we used

rYi ∼ NeuN + c−Fos + p65 + PU.1 + c−Fos ∗ p65

+c−Fos ∗ NeuN + p65 ∗ NeuN + (1|B).

Genes found in ≥3% of EX neuronal nuclei were used for analysis (1,757 genes 
tested across 15,404 EX neuronal nuclei); significance was established at an FDR of 
5% with Benjamini–Hochberg correction.

Identifying cell type-specific gene programs with non-negative matrix 
factorization. Gene programs of EX neurons were identified by NMF (Python 
sklearn package, NMF function, ‘random_state=0, L1 regularization with 
l1_ratio=1, alpha=0’) of their RNA profiles on a subset of genes (a combination 
of highly variable genes identified for clustering and c-Fos-associated and 
p65-associated genes, with manual removal of highly expressed and variable genes 
Ttr, Fth1, Ptgds). Five programs were identified for EX neurons.

Cell type-specific genes associated with protein levels in the mouse 
hippocampus after KA treatment. Similar to methods used before, we 
implemented the following mixed linear model for each cell cluster c using the 
statsmodels package in Python:

Yi,c ∼ NeuN + c−Fos + p65 + PU.1 + log(UMI) + log(HTO) + (1|B),

where Yi.c is the scaled z score of ln (x + 1) counts for gene i in cluster c, NeuN, 
c-Fos, p65 and PU.1 are protein levels in units of nCLR, log (UMI) and log (HTO) 
are natural log counts of unique RNA molecular identifiers and nuclear HTOs, and 
B is a categorical variable denoting the 10x channel batch. Protein levels (nCLR) 
were first scaled using the Python package sklearn preprocessing. Genes found in 
≥3% nuclei of each cluster were used for analysis; significance was established at an 
FDR of 5% with Benjamini–Hochberg correction.

Transcription factor motif enrichment in DEGs. We used DARs of the mouse 
hippocampus profiled in saline-treated and KA-treated samples (1 h after 
treatment) by Fernandez-Albert et al.65. Nearest DARs located more than 1 kb 
from the transcriptional start site (upstream) or transcriptional termination site 
(downstream) of DEGs associated with c-Fos or p65 (additive model) or c-Fos*p65 
(interactional model) were considered as enhancers and used for motif enrichment 
analysis. To find enriched motifs, we scanned a given set of differentially accessible 
peaks for all DNA-binding motifs in CIS-BS (http://cisbp.ccbr.utoronto.ca) and 
JASPAR2018_CORE_vertebrates_non-redundant (http://jaspar2018.genereg.net)  
databases. We then tested for the probability of our observed motif frequency 
among KA-treated DARs using a hypergeometric test, with a null model based on 
random sampling of all ATAC-seq peaks matching for GC content. Motifs with 
P < 10−3 were considered significant.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Raw gene expression count matrices of all inCITE-seq data, BAM files of mapped 
reads and the matrix of mouse hippocampus inCITE-seq data jointly embedded 
with snRNA-seq data are available on Gene Expression Omnibus under the 

accession GSE163480. Data from Habib et al.54 are available under GSE143758. 
Data from MULTI-seq used to compare RNA complexity in HEK cells are available 
under GSE129578. Databases of TF motifs (CIS-BS and JASPAR2018_CORE_
vertebrates_non-redundant) are available at http://cisbp.ccbr.utoronto.ca and  
http://jaspar2018.genereg.net, respectively. Source data are provided with this paper.

Code availability
Code used for analyses is available at https://github.com/klarman-cell- 
observatory/inCITE-seq.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | optimization of intranuclear antibody staining in HeLa cells. a. Nuclear p65 levels change after TNFα treatment, while total p65 in 
cells remains unchanged. Distribution of p65-mNeonGreen reporter fluorescence (x axis; % mode of singlet nuclei, y axis) measured by flow cytometry of 
nuclei (solid line) vs. cells (dashed line) from untreated (‘NT’, blue) or TNFα treated cells (red). b. Flow cytometry distinguishes p65-mNeonGreen signals 
across mixtures of NT and TNFα. Top: Flow cytometry measures of mNeonGreenhigh fraction (x axis) match the input fraction of TNFα nuclei (x axis). 
Bottom: Corresponding high (red) and low (blue) mNeonGreen distributions. c. Immunofluorescence of nuclei smeared onto a slide after intranuclear p65 
stain in suspension, showing complete antibody diffusion into the nucleus; representative of 3 experiments. Scale: 100 µm. d,e. Comparing antibody- and 
fluorescence reporter-derived p65 levels. Antibody (from Alexa Fluor 647 secondary, y axis) and mNeonGreen (x axis) signal of p65 in an equal mixture 
of NT and TNFα stimulated nuclei. Histograms: marginal distributions. d. Agreement between unconjugated p65 antibody and mNeonGreen signal. e. 
No relationship between DNA-conjugated p65inCITE-Ab and mNeonGreen signal using standard intranuclear staining buffer (pre-optimization). f. Relation 
between nuclei hashtag oligonucleotide (HTO; x axis) counts and p65 antibody-derived tag (ADT; y axis) counts, shown across 10,014 NT and TNFα 
nuclei, colored by the number of RNA UMIs. Top left: Pearson R2 and associated P-value (two-sided t-test). To control for this relation, we normalize 
protein ADT counts by nuclei HTO counts (Methods). g. Comparing RNA complexity from inCITE-seq (fixed HeLa nuclei) and MULTI-seq (unfixed HEK 
nuclei, from McGinnis et al.45) by the distribution of the number of detected transcripts (UMIs; top) and genes (bottom). h. Low correlation between 
p65 protein (y axis, nCLR) and RELA RNA levels (x axis, log normalized), with Pearson R2 and associated P-value (two-sided t-test). Dots: nuclei colored 
by treatment (NT, blue; TNFα, red). i. Dynamics of gene expression after LPS stimulation in mouse dendritic cells, from Rabani et al.10, measured across 
time (x axis). Relative expression to steady state, t0 (y axis): pre-mRNA precursor (blue) and mRNA (red) for total (solid) vs. 4sU labeled (dashed) RNA, 
shown for Rela (top) and Nfkbia (bottom), a p65 target as in Fig. 1e.
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Extended Data Fig. 2 | Flow cytometry of inCItE targets on nuclei or cells extracted from frozen mouse hippocampus. Flow cytometry of nuclei 
populations from the mouse hippocampus after intranuclear stains with inCITE antibodies, followed by Alexa Fluor 647-conjugated secondary stain: NeuN 
in PBS (a), PU.1 in PBS (b), p65 in kainic acid (KA) (d), and c-Fos in PBS (e) and KA (f) treated mice. Axes show fluorescence signal (x axis) and side 
scatter (y axis) of singlet nuclei (dots); histograms show marginal distributions. Oval gates show NeuNhigh (a, 58.3%), PU.1high (b, <3%), p65high (d, 55.2%), 
c-Foshigh (0.21% in PBS (e), and 48.7% after KA treatment (f)). c. Right: Distribution of PU.1 in microglia (CD11b+ CX3CR1+, red), CD4+ cells (blue) and 
isotype (gray) cells measured by flow cytometry (left and middle panels) after simultaneous surface protein and intracellular protein stains (Methods).
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Extended Data Fig. 3 | Antibody signal varies across concentration regimes. Antibody stains of the mouse hippocampus (extracted nuclei or in situ) 
with inCITE antibodies across a wide range of dilutions, targeting NeuN in PBS (a,e), PU.1 in PBS (b,f), p65 in kainic acid (c,g), and c-Fos in kainic acid 
(d,h) treated mice. Antibody-derived fluorescence measured by Alexa Fluor 647-conjugated secondary antibody stain. a-d. Histograms are normalized as 
% mode of nuclei singlets. Antibody dilutions are indicated to the right of each axis, with dilutions used for inCITE-seq in bold (NeuN 1:500, PU.1 1:200, 
p65 1:400, c-Fos 1:400). e-h. In situ immunofluorescence of frozen mouse hippocampus with inCITE antibodies across different dilutions, matching the 
concentrations used in flow cytometry; representative of 2 independently conducted experiments. Scale bars, 100 µm.
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Extended Data Fig. 4 | Impact of tissue preparation on epitope detection by antibodies. Comparing in situ immunofluorescence of antibody stains 
(followed by Alexa Fluor 647-conjugated secondary stain) in mouse hippocampus tissue that were immediately frozen (green box) or frozen after 
overnight fixation in 4% PFA (purple box, Methods) across a wide range of antibody dilutions. Images are representative of 2 independent experiments.  
a. NeuN in PBS. Biolegend NeuN antibody (clone 1B7) used for inCITE and Abcam NeuN antibody (clone EPR12763). b. PU.1 in PBS. Biolegend PU.1 
antibody (clone 7C2C34) used for inCITE and Cell Signaling Technology PU.1 antibody (clone 9G7). c. p65 in KA. Biolegend p65 antibody (clone Poly6226) 
used for inCITE. d. c-Fos in KA treated mice. Biolegend c-Fos antibody (clone Poly6414) used for inCITE and Abcam c-Fos antibody (ab190289).  
Scale bars, 100 µm.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Comparing and combining single nucleus RNA profiles from inCItE-seq and snRNA-seq of mouse hippocampus. a. Comparing 
the complexity of RNA profiles from inCITE-seq and standard snRNA-seq of the mouse hippocampus. Distributions (marginals) of the number of UMIs 
(x axis) and genes (y axis) from inCITE-seq (left), matching mouse hippocampus snRNA-seq in this study (middle), and previously published snRNA-seq 
(right). Scatter plot shows the density of individual nuclei (dots) calculated with a Gaussian kernel estimate. b,c. Major cell types from the adult mouse 
hippocampus identified from inCITE-seq RNA profiles alone. b. UMAP embedding of 24,444 single nucleus inCITE-seq RNA profiles (dots) colored by 
annotated cluster (number). c. Expression of marker genes (columns) used for annotating cell type clusters (rows), showing mean expression of log 
normalized counts (dot color) and proportion of expressing cells (dot size). d-j. Enhanced cell type distinctions and annotation by combining RNA profiles 
from inCITE-seq and snRNA-seq. Joint UMAP embedding of 22,260 inCITE-seq and 15,507 snRNA-seq RNA profiles (dots) colored by unsupervised 
leiden clusters or subcluster of leiden group 4 (numbers) (Methods). e. Distribution of mitochondrial fraction of total gene content (y axis, left) and total 
transcript counts (y axis, right) in each leiden cluster or subcluster of leiden group 4 (x axis, both). Asterisks indicate cluster 15 (n = 327 nuclei) and 
subcluster 4,3 (n = 179 nuclei) that were removed for high mitochondrial content and for low RNA complexity, respectively. f-h. UMAP embedding as 
in Fig. 2d colored by doublets that were removed from subsequent analyses (n = 3,059 doublets, (f)), batch and assay (g), or condition (h). i. Percent of 
nuclei (y axis) from each batch/assay (color) in each cluster (x axis). j. Mean expression of log normalized counts (dot color) and proportion of expressing 
cells (dot size) of marker genes (columns) used for annotating cell type clusters in d (rows).
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Extended Data Fig. 6 | Protein levels by inCItE-seq batch (replicate). a-d. Distribution of protein levels (x axis, nCLR) shown as kernel density estimates 
of NeuN (a), PU.1 (b), p65 (c), or c-Fos (d) in each batch (top: batch 1; bottom: batch 2) in biologically relevant subsets as foreground (color) and 
appropriate background set of nuclei (grey). Dashed line: Batch-specific threshold used to partition protein level as high vs. low. e-i. Density distribution  
of (e) nucleus hashtag counts (x axis, HTOs) or (f-i) antibody-derived tags (x axis, ADTs) of inCITE target proteins, colored by batch (batch 1, gray;  
batch 2, blue).
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Extended Data Fig. 7 | Protein effects on global gene expression. a. Relation between unspliced pre-mRNA expression of Rbfox3 and nuclear protein levels 
of NeuN. Distribution of pre-mRNA levels (Z score of log-normalized counts, y axis) in nuclei with high or low levels of NeuN (x axis) after PBS (gray) or 
KA (green) treatment (NeuN thresholds in Extended Data Fig. 6). Boxplots show the median (centre line), box bounds represent first and third quartiles, 
and whiskers span from each quartile to the minimum or the maximum (1.5 interquartile range below 25% or above 75% quartiles). Dots correspond 
to 227 individual nuclei with non-zero pre-mRNA levels measured across n = 2 biologically independent samples. Significance, from left: P = 5*10−15, 
P = 9*10−5 two-sided Mann-Whitney test. NS – not significant. b. Functional gene sets enriched in TF associated genes. Enrichment (-log10(P-value), x axis, 
hypergeometric test) of Gene Ontology (GO) terms (y axis) in genes significantly associated (from top to bottom) with p65 (33 genes), PU.1 (13 genes), 
and c-Fos (10 genes). c. Genes associated with NeuN. Effect size (x axis) and associated significance (y axis, -log10(P-value)) for the association of each 
gene (dots) with NeuN by a model of gene expression as a linear combination of the four inCITE-seq target proteins after regressing out treatment and cell 
type (Methods). Select genes are labeled. Colored dots: Benjamini-Hochberg FDR < 5%.
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Extended Data Fig. 8 | Genes and modules associated with tFs within excitatory (EX) neurons. a. Genes associated with protein-protein pairs in the 
interaction model, identified by modeling gene expression across excitatory neurons as a linear combination of individual proteins and their pairwise 
interactions after regressing out treatment. Effect size (x axis) and significance (y axis, -log10(P-value)) for DEGs (dots) associated with each protein-
protein interaction term: p65 and c-Fos (left), c-Fos and NeuN (middle), and p65 and NeuN (right). Select genes are labeled. Colored dots: Benjamini-
Hochberg FDR < 5%. b. Pearson correlation coefficient (red/blue colorbar) of pairwise gene expression profiles (rows and columns) significantly 
(FDR < 5%) associated positively (purple) or negatively (green), with c-Fos (additive model), p65 (additive model), or c-Fos*p65 (interaction model), 
ordered by hierarchical clustering. Top bars: Effect size of each protein or protein-protein pair. c. Treatment effect on gene programs. Program scores (y 
axis) for 5 EX programs (in Fig. 4f) of 15,226 individual nuclei (dots) from PBS or KA treated mice (x axis) measured across 2 biologically independent 
experiments. Boxplots show the median (centre line), box bounds represent first and third quartiles, and whiskers span from each quartile to the minimum 
or the maximum (1.5 interquartile range below 25% or above 75% quartiles). Significance, from left: P = 0.049, P = 2.7*10−271, P = 2.2*10−199, P = 6.1*10−7, 
two-sided Mann-Whitney test. NS – not significant.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | treatment-dependent cis-regulatory elements and tF-associated genes. a-c. Prediction of co-regulatory patterns by TF motif 
enrichment in DEGs associated with c-Fos or p65 (additive model), or their interaction c-Fos*p65 (interaction model). a,b. Significance (-log10(P-value), 
y axis) and rank order (x axis) of TF motifs (dots) enriched in enhancers of DEGs associated with each protein (additive model) or protein-protein 
(interaction model) term in excitatory neurons, using enhancers of PBS (a) or KA (b) treated sample as background. Black: significant motifs (P < 10−3, 
hypergeometric test); gray: not significant. c. TF motif enrichment (columns; dot size, -log10(P-value)) and proportion of excitatory neuron nuclei 
expressing the RNA (color) of significant TFs (rows) in the enhancers of c-Fos (additive model), p65 (additive model), or c-Fos*p65 (interaction model) 
DEGs, compared to other enhancers within the KA treated sample. d. Treatment-dependence of gene association with c-Fos and p65. Global effect size 
of genes (dots) associated with c-Fos (left) and p65 (right), after PBS (x axis) or KA treatment (y axis) (Methods). Colored dots: genes with significant 
coefficients (Benjamini-Hochberg FDR < 5%) in PBS (gray), KA (green), or both (black). Select genes are labeled. Bottom right: linear correlation R2 and 
associated P value (two-sided t-test).
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A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Sequencing data was collected on a NextSeq500

Data analysis Cumulus v1.0, Cellranger v4.0.0, DemuxEM v0.1, Python 3.7.9, scanpy 1.7.2, Anndata 0.7.6, Leidenalg 0.8.4, harmony-pytorch 0.1.4, numpy 
1.20.2, matplotlib 3.4.1, seaborn 0.11.1, pandas 1.2.4, velocyto v0.17.17, statsmodels 0.12.2, sklearn 0.24.2.  
 
Jupyter notebooks with custom Python code and the complete list of used python packages is available on GitHub: https://github.com/
klarman-cell-observatory/inCITE-seq

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Raw (BAM files) and processed data (gene and protein count matrices) are available at GEO accession GSE163480. 
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Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculations were conducted for either the HeLa or mouse hippocampus experiment. As we sequenced tens of thousands of 
single nuclei for each experiment, we determined that these measurements provided a robust sample size to discern cell state and cell type-
specific differences in protein levels as a proof of principle. 

Data exclusions No data were excluded from the study. 

Replication All technical replicates of inCITE antibody stains were successful, evaluated by flow cytometry to verify clean signal separation after 
intranuclear stain with DNA-conjugated antibodies. We conducted roughly 12 technical replicates for NT vs. TNFa treated HeLa cells, and 2 
technical replicates for the mouse hippocampus (not including the data used in the paper). 

Randomization HeLa populations seeded on two separate dishes were randomly selected to be treated with TNFα or no treatment. 8-week-old male mice 
were randomly designated to PBS and kainic acid treatment. 

Blinding Blinding was not possible, as the operators conducting the experiments and the analyses were the same individual.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used p65 (Biolegend Poly6226, cat #622601), NeuN (Biolegend 1B7, cat #834502), c-Fos (Biolegend Poly6414, cat #834502), PU.1 

(Biolegend 7C2C34, cat #681307), CD31 (eBioscience 390, cat #14-0311-82), CD4-BUV395 (BD GK1.5, cat #563790), CD45.2-FITC 
(eBioscience 104, cat #11-0454-82), CD11b-BV421 (BioLegend M1/70 cat #101235, CX3CR1-APC (BioLegend SA011F11 cat #149008),  
rat IgG2a-PE isotype (Biolegend RTK2758, cat #400507), anti-rabbit Alexa Fluor 647 secondary (Invitrogen A27040), donkey anti-
rabbit AF647 (Jackson Immunoresearch #711-605-152), donkey anti-rabbit AF594 (Jackson Immunoresearch #711-585-152), donkey 
anti-mouse AF488 (Jackson Immunoresearch #715-545-150), donkey anti-rat AF647 (Jackson Immunoresearch #712-605-153).

Validation All primary antibodies used in this study were established clones validated by the vendor (provider). We provide additional validation 
of each antibody used for inCITE-seq by the following: p65 signal matching that of the internal mNeonGreen reporter in HeLa cells, 
NeuN antibody signal enriched in neuronal clusters determined by sequencing, microglia-specific PU.1 antibody signal verified by 
flow cytometry with CX3CR1, and c-Fos flow cytometry signal that match widespread neuronal excitation measured by 
immunohistochemistry of KA treated mice. 

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) Gift from Lab of Iain Cheeseman, MIT (McKinley and Cheeseman, Developmental Cell 2017).
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Authentication Cell lines were not authenticated by the authors in this study, as only the species and the signal from p65-mNeonGreen 
reporter were important for the study. We confirmed that these HeLa cells were human-derived, based on the aligned reads 
from single nucleus RNA sequencing. 

Mycoplasma contamination Cell lines were tested monthly for mycoplasma contamination and always tested negative. 

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used in the study.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals C57BL/6J (Jax 000664) mice were purchased from The Jackson Laboratory and bred in-house. Male mice were used at ~8 weeks of 
age. All mice were maintained under SPF conditions on a 12-h light–dark cycle, at ambient temperature 21.5 + 1C̊ and relative 
humidity between 30% and 70%, and provided food and water ad libitum. All mouse experiments were approved by, and performed 
in accordance with, the Institutional Animal Care and Use Committee guidelines at Weill Cornell Medicine.

Wild animals The study did not involve wild animals.

Field-collected samples The study did not involve samples collected from the field.

Ethics oversight All mouse experiments were approved by, and performed in accordance with, the Institutional Animal Care and Use Committee 
guidelines at Weill Cornell Medicine. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Nuclei extractions from HeLa and the mouse hippocampus were isolated using the EZ prep lysis buffer and glass douncers 
(elaborated in Methods). Nuclei suspensions were lightly fixed, blocked, then stained with antibodies. 

Instrument Flow cytometry data was collected on a Beckman CytoFLEX Analyzer. No sorting was involved. 

Software Data were collected with CytExpert on the CytoFLEX Analyzer, and subsequently analyzed with FlowJo v10.7.1. 

Cell population abundance No sorting was involved in this study. 

Gating strategy FSC/SSC values were first gated to exclude debris. DAPI signal was used to identify and gate on singlet nuclei peaks. 
Subsequent flow cytometry analyses were conducted on only single nuclei subpopulations. 

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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